Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 111(2): E217-26, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24385587

ABSTRACT

We identified that the chemical linkage of the anticancer drug doxorubicin onto squalene, a natural lipid precursor of the cholesterol's biosynthesis, led to the formation of squalenoyl doxorubicin (SQ-Dox) nanoassemblies of 130-nm mean diameter, with an original "loop-train" structure. This unique nanomedicine demonstrates: (i) high drug payload, (ii) decreased toxicity of the coupled anticancer compound, (iii) improved therapeutic response, (iv) use of biocompatible transporter material, and (v) ease of preparation, all criteria that are not combined in the currently available nanodrugs. Cell culture viability tests and apoptosis assays showed that SQ-Dox nanoassemblies displayed comparable antiproliferative and cytotoxic effects than the native doxorubicin because of the high activity of apoptotic mediators, such as caspase-3 and poly(ADP-ribose) polymerase. In vivo experiments have shown that the SQ-Dox nanomedicine dramatically improved the anticancer efficacy, compared with free doxorubicin. Particularly, the M109 lung tumors that did not respond to doxorubicin treatment were found inhibited by 90% when treated with SQ-Dox nanoassemblies. SQ-Dox nanoassembly-treated MiaPaCa-2 pancreatic tumor xenografts in mice decreased by 95% compared with the tumors in the saline-treated mice, which was significantly higher than the 29% reduction achieved by native doxorubicin. Concerning toxicity, SQ-Dox nanoassemblies showed a fivefold higher maximum-tolerated dose than the free drug, and moreover, the cardiotoxicity study has evidenced that SQ-Dox nanoassemblies did not cause any myocardial lesions, such as those induced by the free doxorubicin treatment. Taken together, these findings demonstrate that SQ-Dox nanoassemblies make tumor cells more sensitive to doxorubicin and reduce the cardiac toxicity, thus providing a remarkable improvement in the drug's therapeutic index.


Subject(s)
Doxorubicin/chemistry , Doxorubicin/pharmacology , Molecular Conformation , Nanomedicine/methods , Squalene/chemistry , Analysis of Variance , Animals , Apoptosis/drug effects , Apoptosis/physiology , Blotting, Western , Cell Line, Tumor , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Cryoelectron Microscopy , Doxorubicin/metabolism , Doxorubicin/pharmacokinetics , Female , Fluorescence , Heart/anatomy & histology , Heart/drug effects , Humans , Immunohistochemistry , Male , Mice , Mice, Nude , Microscopy, Electron, Transmission , Molecular Structure , Rats , Squalene/metabolism , Troponin T/blood
2.
J Pharmacol Toxicol Methods ; 59(2): 73-85, 2009.
Article in English | MEDLINE | ID: mdl-19135537

ABSTRACT

INTRODUCTION: Drug-induced QT interval prolongation is a major concern in new drug candidate development. This study presents a method of assessment of drug-induced QT interval prolongation without need for QT correction in conscious Beagle dogs and Cynomolgus monkeys monitored by telemetry. Accuracy and reliability are analysed by comparison with a reference QT correction method (Holzgrefe) from experiments performed with reference substances terfenadine, thioridazine and sotalol. METHODS: The QT shift method principle is assessment of any drug-induced QT interval shift directly from the individual QT/RR relationship. The individual QT/RR relationship is built from a treatment-free 24-hour recording period. QT and RR intervals are determined from a beat-to-beat analysis. A probabilistic method is used to define the individual QT/RR relationships. Checks were performed to compare results obtained with the QT shift method and the QT correction methods. The robustness of the QT shift method was tested under various conditions of drug-induced heart rate change (i.e. normal, bradycardia and tachycardia). RESULTS: The extent of agreement with the used reference QT correction method, Holzgrefe formula, was excellent (3-4 ms) in both animal species under the various drug induced effects on heart rate. The statistical sensitivity threshold for detection of QT prolongation according to a standard safety pharmacology study design was 7-8 ms. DISCUSSION: When combined with the probabilistic determination of individual QT/RR relationships, this simple method provides a direct assessment of a drug-induced effect on QT interval, without any curve fitting or application of correction formula. Despite noticeably different shapes in QT/RR relationships, the QT shift method is applicable to both Beagle dogs and Cynomolgus monkeys. It is likely that the QT shift method will be particularly helpful in problematic cases, enabling detection of drug-induced prolongation of less than 10 ms.


Subject(s)
Drug Evaluation, Preclinical/methods , Electrocardiography/instrumentation , Electrocardiography/standards , Heart Rate/physiology , Long QT Syndrome/chemically induced , Animals , Anti-Arrhythmia Agents/adverse effects , Anti-Arrhythmia Agents/pharmacology , Dogs , Dopamine Antagonists/adverse effects , Dopamine Antagonists/pharmacology , Dose-Response Relationship, Drug , Electrocardiography/drug effects , Female , Heart Rate/drug effects , Histamine H1 Antagonists, Non-Sedating/adverse effects , Histamine H1 Antagonists, Non-Sedating/pharmacology , Macaca fascicularis , Male , Models, Statistical , Phenethylamines/adverse effects , Phenethylamines/pharmacology , Reference Standards , Sensitivity and Specificity , Sotalol/adverse effects , Sotalol/pharmacology , Sulfonamides/adverse effects , Sulfonamides/pharmacology , Telemetry , Terfenadine/adverse effects , Terfenadine/pharmacology , Thioridazine/adverse effects , Thioridazine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...