Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Environ Epigenet ; 4(2): dvy011, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29992049

ABSTRACT

Epigenetic modifications, of which DNA methylation is the most stable, are a mechanism conveying environmental information to subsequent generations via parental germ lines. The paternal contribution to adaptive processes in the offspring might be crucial, but has been widely neglected in comparison to the maternal one. To address the paternal impact on the offspring's adaptability to changes in diet composition, we investigated if low protein diet (LPD) in F0 males caused epigenetic alterations in their subsequently sired sons. We therefore fed F0 male Wild guinea pigs with a diet lowered in protein content (LPD) and investigated DNA methylation in sons sired before and after their father's LPD treatment in both, liver and testis tissues. Our results point to a 'heritable epigenetic response' of the sons to the fathers' dietary change. Because we detected methylation changes also in the testis tissue, they are likely to be transmitted to the F2 generation. Gene-network analyses of differentially methylated genes in liver identified main metabolic pathways indicating a metabolic reprogramming ('metabolic shift'). Epigenetic mechanisms, allowing an immediate and inherited adaptation may thus be important for the survival of species in the context of a persistently changing environment, such as climate change.

2.
J Thromb Haemost ; 16(6): 1211-1225, 2018 06.
Article in English | MEDLINE | ID: mdl-29575487

ABSTRACT

Essentials Phosphoinositide 3-kinase and MAPK pathways crosstalk via PDK1. PDK1 is required for adenosine diphosphate-induced platelet activation and thromboxane generation. PDK1 regulates RAF proto-oncogene Ser/Thr kinase (Raf1) activation in the MAPK pathway. Genetic ablation of PDK1 protects against platelet-dependent thrombosis in vivo. SUMMARY: Background Platelets are dynamic effector cells with functions that span hemostatic, thrombotic and inflammatory continua. Phosphoinositide-dependent protein kinase 1 (PDK1) regulates protease-activated receptor 4-induced platelet activation and thrombus formation through glycogen synthase kinase3ß. However, whether PDK1 also signals through the ADP receptor and its functional importance in vivo remain unknown. Objective To establish the mechanism of PDK1 in ADP-induced platelet activation and thrombosis. Methods We assessed the role of PDK1 on 2MeSADP-induced platelet activation by measuring aggregation, thromboxane generation and phosphorylation events in the presence of BX-795, which inhibits PDK1, or by using platelet-specific PDK1 knockout mice and performing western blot analysis. PDK1 function in thrombus formation was assessed with an in vivo pulmonary embolism model. Results PDK1 inhibition with BX-795 reduced 2-methylthio-ADP (2MeSADP)-induced aggregation of human and murine platelets by abolishing thromboxane generation. Similar results were observed in pdk1-/- mice. PDK1 was also necessary for the phosphorylation of mitogen-activated protein kinase kinase 1/2 (MEK1/2), extracellular signal-regulated kinase 1/2, and cytosolic phospholipase A2, indicating that PDK1 regulates an upstream kinase in the mitogen-activated protein kinase (MAPK) pathway. We next determined that this upstream kinase is Raf-1, a serine/threonine kinase that is necessary for the phosphorylation of MEK1/2, as pharmacological inhibition and genetic ablation of PDK1 were sufficient to prevent Raf1 phosphorylation. Furthermore, in vivo inhibition or genetic ablation of PDK1 protected mice from collagen/epinephrine-induced pulmonary embolism. Conclusion PDK1 governs thromboxane generation and thrombosis in platelets that are stimulated with 2MeSADP by regulating activation of the MAPK pathway.


Subject(s)
3-Phosphoinositide-Dependent Protein Kinases/metabolism , Blood Platelets/enzymology , Mitogen-Activated Protein Kinases/blood , Platelet Aggregation/drug effects , Proto-Oncogene Proteins c-raf/blood , Pulmonary Embolism/enzymology , Thrombosis/enzymology , Thromboxanes/blood , 3-Phosphoinositide-Dependent Protein Kinases/antagonists & inhibitors , 3-Phosphoinositide-Dependent Protein Kinases/blood , 3-Phosphoinositide-Dependent Protein Kinases/deficiency , 3-Phosphoinositide-Dependent Protein Kinases/genetics , Animals , Blood Platelets/drug effects , Disease Models, Animal , Humans , Mice, Knockout , Phosphorylation , Platelet Aggregation Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Mas , Pulmonary Embolism/blood , Pulmonary Embolism/genetics , Pulmonary Embolism/prevention & control , Pyrimidines/pharmacology , Signal Transduction , Thiophenes/pharmacology , Thrombosis/blood , Thrombosis/genetics , Thrombosis/prevention & control
3.
J Thromb Haemost ; 15(12): 2408-2418, 2017 12.
Article in English | MEDLINE | ID: mdl-28981191

ABSTRACT

Essentials Platelets express retinoic acid receptor (RAR)α protein, specifically binding target mRNAs. mRNAs under RARα control include MAP1LC3B2, SLAIN2, and ANGPT1. All-trans retinoic acid (atRA) releases RARα from its target mRNA. RARα expressed in human platelets exerts translational control via direct mRNA binding. SUMMARY: Background Translational control mechanisms in platelets are incompletely defined. Here, we determined whether the nuclear transcription factor RARα controls protein translational events in human platelets. Methods Isolated human platelets were treated with the pan-RAR agonist all-trans-retinoic acid (atRA). Global and targeted translational events were examined. Results Stimulation of platelets with atRA significantly increased global protein expression. RARα protein bound to a subset of platelet mRNAs, as measured by next-generation RNA-sequencing. In-depth analyses of 5' and 3'-untranslated regions of the RARα-bound mRNAs revealed consensus RARα binding sites in microtubule-associated protein 1 light chain 3 beta 2 (MAP1LC3B2), SLAIN motif-containing protein 2 (SLAIN2) and angiopoietin-1 (ANGPT1) transcripts. When platelets were treated with atRA, binding interactions between RARα protein and mRNA for MAP1LC3B2, SLAIN2 and ANGPT1 were significantly decreased. Consistent with the release of bound RARα protein from MAP1LCB2mRNA, we observed an increase in the synthesis of MAP1LC3B2 protein. Conclusions These findings provide the first evidence that RARα, a nuclear transcriptional factor, regulates synthetic events in anucleate human platelets. They also reveal an additional non-genomic role for RARα in platelets that may have implications for the vitamin A-dependent signaling in humans.


Subject(s)
Blood Platelets/metabolism , Blood Proteins/biosynthesis , Blood Proteins/genetics , Retinoic Acid Receptor alpha/blood , Angiopoietin-1/biosynthesis , Angiopoietin-1/blood , Angiopoietin-1/genetics , Base Sequence , Binding Sites/genetics , Blood Platelets/drug effects , Humans , In Vitro Techniques , Microtubule-Associated Proteins/biosynthesis , Microtubule-Associated Proteins/blood , Microtubule-Associated Proteins/genetics , Protein Biosynthesis , RNA, Messenger/blood , RNA, Messenger/genetics , Retinoic Acid Receptor alpha/genetics , Tretinoin/pharmacology
4.
J Thromb Haemost ; 14(11): 2230-2240, 2016 11.
Article in English | MEDLINE | ID: mdl-27629384

ABSTRACT

Essentials Co-existent damaging variants are likely to cause more severe bleeding and may go undiagnosed. We determined pathogenic variants in a three-generational pedigree with excessive bleeding. Bleeding occurred with concurrent variants in prostaglandin synthase-1 (PTGS-1) and factor VIII. The PTGS-1 variant was associated with functional defects in the arachidonic acid pathway. SUMMARY: Background Inherited human variants that concurrently cause disorders of primary hemostasis and coagulation are uncommon. Nevertheless, rare cases of co-existent damaging variants are likely to cause more severe bleeding and may go undiagnosed. Objective We prospectively sought to determine pathogenic variants in a three-generational pedigree with excessive bleeding. Patients/methods Platelet number, size and light transmission aggregometry to multiple agonists were evaluated in pedigree members. Transmission electron microscopy determined platelet morphology and granule content. Thromboxane release studies and light transmission aggregometry in the presence or absence of prostaglandin G2 assessed specific functional defects in the arachidonic acid pathway. Whole exome sequencing (WES) and targeted nucleotide sequence analysis identified potentially deleterious variants. Results Pedigree members with excessive bleeding had impaired platelet aggregation with arachidonic acid, epinephrine and low-dose ADP, as well as reduced platelet thromboxane B2 release. Impaired platelet aggregation in response to 2MesADP was rescued with prostaglandin G2 , a prostaglandin intermediate downstream of prostaglandin synthase-1 (PTGS-1) that aids in the production of thromboxane. WES identified a non-synonymous variant in the signal peptide of PTGS-1 (rs3842787; c.50C>T; p.Pro17Leu) that completely co-segregated with disease phenotype. A variant in the F8 gene causing hemophilia A (rs28935203; c.5096A>T; p.Y1699F) was also identified. Individuals with both variants had more severe bleeding manifestations than characteristic of mild hemophilia A alone. Conclusion We provide the first report of co-existing variants in both F8 and PTGS-1 genes in a three-generation pedigree. The PTGS-1 variant was associated with specific functional defects in the arachidonic acid pathway and more severe hemorrhage.


Subject(s)
Factor VIII/genetics , Hemorrhage/genetics , Prostaglandin-Endoperoxide Synthases/genetics , Adult , Aged , Arachidonic Acid/metabolism , Child , Cyclooxygenase 1/genetics , Family Health , Female , Gene Frequency , Genetic Variation , Hemorrhage/blood , Hemorrhage/immunology , Humans , Male , Middle Aged , Pedigree , Platelet Aggregation , Platelet Count , Prospective Studies , Prostaglandin-Endoperoxide Synthases/blood , Thromboxane B2/genetics , Young Adult
5.
J Thromb Haemost ; 14(5): 1082-94, 2016 05.
Article in English | MEDLINE | ID: mdl-26848712

ABSTRACT

UNLABELLED: Essentials Platelets employ proteins/signaling pathways traditionally thought reserved for nuclear niche. We determined retinoic-acid-receptor alpha (RARα) expression and function in human platelets. RARα/actin-related protein-2/3 complex (Arp2/3) interact via non-genomic signaling in platelets. RARα regulates Arp2/3-mediated actin cytoskeletal dynamics and platelet spreading. SUMMARY: Background Platelets utilize proteins and pathways classically reserved for the nuclear niche. Methods We determined whether human platelets express retinoic-acid-receptor family members, traditionally thought of as nuclear transcription factors, and deciphered the function of RARα. Results We found that RARα is robustly expressed in human platelets and megakaryocytes and interacts directly with actin-related protein-2/3 complex (Arp2/3) subunit 5 (Arp2/3s5). Arp2/3s5 co-localized with RARα in situ and regulated platelet cytoskeletal processes. The RARα ligand all-trans retinoic acid (atRA) disrupted RARα-Arp2/3 interactions. When isolated human platelets were treated with atRA, rapid cytoskeletal events (e.g. platelet spreading) were inhibited. In addition, when platelets were cultured for 18 h in the presence of atRA, actin-dependent morphological changes (e.g. extended cell body formation) were similarly inhibited. Using in vitro actin branching assays, RARα and Arp2/3-regulated complex actin branch formation was demonstrated. Consistent with inhibition of cytoskeletal processes in platelets, atRA, when added to this branching assay, resulted in dysregulated actin branching. Conclusion Our findings identify a previously unknown mechanism by which RARα regulates Arp2/3-mediated actin cytoskeletal dynamics through a non-genomic signaling pathway. These findings have broad implications in both nucleated and anucleate cells, where actin cytoskeletal events regulate cell morphology, movement and division.


Subject(s)
Actins/metabolism , Blood Platelets/metabolism , Cytoskeleton/metabolism , Retinoic Acid Receptor alpha/metabolism , Actin-Related Protein 2/metabolism , Actin-Related Protein 3/metabolism , Antigens, CD34/metabolism , Apoptosis , Gene Expression Profiling , Healthy Volunteers , Humans , Mass Spectrometry , Microscopy, Fluorescence , Signal Transduction/drug effects , Transcription Factors/metabolism
6.
J Thromb Haemost ; 13 Suppl 1: S26-32, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26149034

ABSTRACT

Platelets are generated from nucleated precursors referred to as megakaryocytes. The formation of platelets is one of the most elegant and unique developmental processes in eukaryotes. Because they enter the circulation without nuclei, platelets are often considered simple, non-complex cells that have limited functions beyond halting blood flow. However, emerging evidence over the past decade demonstrates that platelets are more sophisticated than previously considered. Platelets carry a rich repertoire of messenger RNAs (mRNAs), microRNAs (miRNAs), and proteins that contribute to primary (adhesion, aggregation, secretion) and alternative (immune regulation, RNA transfer, translation) functions. It is also becoming increasingly clear that the 'genetic code' of platelets changes with race, genetic disorders, or disease. Changes in the 'genetic code' can occur at multiple points including megakaryocyte development, platelet formation, or in circulating platelets. This review focuses on regulation of the 'genetic code' in megakaryocytes and platelets and its potential contribution to health and disease.


Subject(s)
Blood Platelets/metabolism , Genetic Code , Genetic Variation , Megakaryocytes/metabolism , Thrombopoiesis/genetics , Animals , Gene Expression Regulation , Humans , Transcription, Genetic
7.
Thromb Haemost ; 110(5): 920-4, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24048267

ABSTRACT

Protein synthesis and degradation are essential processes that allow cells to survive and adapt to their surrounding milieu. In nucleated cells, the degradation and/or cleavage of proteins is required to eliminate aberrant proteins. Cells also degrade proteins as a mechanism for cell signalling and complex cellular functions. Although the last decade has convincingly shown that platelets synthesise proteins, the roles of protein degradation in these anucleate cytoplasts are less clear. Here we review what is known about protein degradation in platelets placing particular emphasis on the proteasome and the cysteine protease calpain.


Subject(s)
Blood Platelets/metabolism , Cysteine Proteases/metabolism , Proteasome Endopeptidase Complex/metabolism , Animals , Humans , Proteolysis , Signal Transduction
8.
J Thromb Haemost ; 11(5): 951-62, 2013 May.
Article in English | MEDLINE | ID: mdl-23433144

ABSTRACT

BACKGROUND: Worldwide, dengue is the most prevalent human arbovirus disease. Dengue infection may cause a range of clinical manifestations from self-limiting febrile illness through to a life-threatening syndrome accompanied by both bleeding and shock. Thrombocytopenia is frequently observed in mild and severe disease; however, the mechanisms involved in DENV-induced platelet activation and thrombocytopenia are incompletely understood. PATIENTS AND METHODS: Freshly isolated platelets from patients with dengue were evaluated for markers of activation, mitochondrial alteration and activation of cell death pathways. In parallel, we examined direct DENV-induced activation and apoptosis of platelets obtained from healthy subjects. RESULTS: We found that platelets from DENV-infected patients exhibited increased activation by comparison to control subjects. Moreover, platelets from DENV-infected patients exhibited classic signs of the intrinsic pathway of apoptosis that include increased surface phosphatidylserine exposure, mitochondrial depolarization and activation of caspase-9 and -3. Indeed, thrombocytopenia was shown to strongly associate with enhanced platelet activation and cell death in DENV-infected patients. Platelet activation, mitochondrial dysfunction and caspase-dependent phosphatidylserine exposure on platelets were also observed when platelets from healthy subjects were directly exposed to DENV in vitro. DENV-induced platelet activation was shown to occur through mechanisms largely dependent on DC-SIGN. CONCLUSIONS: Together our results demonstrate that platelets from patients with dengue present signs of activation, mitochondrial dysfunction and activation of the apoptosis caspase cascade, which may contribute to the development of thrombocytopenia in patients with dengue. Our results also suggest the involvement of DC-SIGN as a critical receptor in DENV-dependent platelet activation.


Subject(s)
Caspases/physiology , Cell Adhesion Molecules/physiology , Cell Death/physiology , Dengue Virus/physiology , Lectins, C-Type/physiology , Mitochondria/physiology , Platelet Activation/physiology , Receptors, Cell Surface/physiology , Adult , Case-Control Studies , Female , Humans , Male , Middle Aged
9.
J Thromb Haemost ; 9(4): 748-58, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21255247

ABSTRACT

BACKGROUND: Activated platelets have previously-unrecognized mechanisms of post-transcriptional gene expression that may influence hemostasis and inflammation. A novel pathway involves splicing of pre-mRNAs in resting platelets to mature, translatable mRNAs in response to cellular activation. OBJECTIVES: We asked if bacterial products and host agonists present in the septic milieu induce tissue factor pre-mRNA splicing in platelets from healthy subjects. In parallel, we asked if spliced tissue factor (TF) mRNA is present in platelets from septic patients in a proof-of-principle analysis. PATIENTS/METHODS: TF pre-mRNA and mRNA expression patterns were characterized in platelets from septic patients and in platelets isolated from healthy subjects activated with bacteria, toxins and inflammatory agonists. Procoagulant activity was also measured. RESULTS AND CONCLUSIONS: Live bacteria, staphylococcal α-toxin and lipopolysaccharide (LPS) induced TF pre-mRNA splicing in platelets isolated from healthy subjects. Toxin-stimulated platelets accelerated plasma clotting, a response that was blocked by a previously-characterized splicing inhibitor and by an anti-tissue factor antibody. Platelets from septic patients expressed spliced TF mRNA, whereas it was absent from unselected and age-matched control subjects. Tissue factor-dependent procoagulant activity was elevated in platelets from a subset of septic patients. Thus, bacterial and host factors induce splicing of TF pre-mRNA, expression of TF mRNA and tissue factor-dependent clotting activity in human platelets. TF mRNA is present in platelets from some septic patients, indicating that it may be a marker of altered platelet phenotype and function in sepsis and that splicing pathways are induced in this syndrome.


Subject(s)
Blood Platelets/metabolism , RNA Splicing , RNA, Messenger/metabolism , Sepsis/metabolism , Base Sequence , DNA Primers , Humans
10.
J Thromb Haemost ; 7(11): 1759-66, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19691483

ABSTRACT

Although their central role is in the prevention of bleeding, platelets probably contribute to diverse processes that extend beyond hemostasis and thrombosis. For example, platelets can recruit leukocytes and progenitor cells to sites of vascular injury and inflammation; they release proinflammatory and anti-inflammatory and angiogenic factors and microparticles into the circulation; and they spur thrombin generation. Data from animal models suggest that these functions may contribute to atherosclerosis, sepsis, hepatitis, vascular restenosis, acute lung injury, and transplant rejection. This article represents an integrated summary of presentations given at the Fourth Annual Platelet Colloquium in January 2009. The process of and factors mediating platelet-platelet and platelet-leukocyte interactions in inflammatory and immune responses are discussed, with the roles of P-selectin, chemokines and Src family kinases being highlighted. Also discussed are specific disorders characterized by local or systemic platelet activation, including coronary artery restenosis after percutaneous intervention, alloantibody-mediated transplant rejection, wound healing, and heparin-induced thrombocytopenia.


Subject(s)
Blood Platelets/physiology , Blood Platelets/chemistry , Blood Platelets/pathology , Cell Communication , Disease/etiology , Humans , Immunity , Inflammation
11.
J Thromb Haemost ; 7(2): 241-6, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18983498

ABSTRACT

In the late 1960s, numerous investigators independently demonstrated that platelets are capable of synthesizing proteins. Studies continued at a steady pace over the next 30 years and into the 21st century. Collectively, these investigations confirmed that platelets synthesize proteins and that the pattern of protein synthesis changes in response to cellular activation. More recent studies have characterized the mechanisms by which platelets synthesize proteins and have shown that protein synthesis alters the phenotype and functions of platelets. Here, we chronologically review our increased understanding of protein synthetic responses in platelets and discuss how the field may evolve over the next decade.


Subject(s)
Blood Platelets/metabolism , Protein Biosynthesis , Animals , Biomedical Research/history , Biomedical Research/trends , History, 20th Century , History, 21st Century , Humans , Platelet Activation
13.
J Thromb Haemost ; 1(9): 1897-905, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12941029

ABSTRACT

Platelets are small in size and simple in structure. Nevertheless, these anucleate cytoplasts utilize complex molecular systems to regulate a variety of biological functions. Here we review evolutionary paths, traditional roles, and previously unrecognized biological capacities of platelets that interface thrombosis with inflammation and potentially identify new roles in inflammatory diseases.


Subject(s)
Blood Platelets/physiology , Inflammation/etiology , Blood Platelets/metabolism , Humans , Inflammation/blood , Integrins/physiology , Phylogeny , Platelet Activation , Thrombosis/blood , Thrombosis/etiology
14.
Circ Res ; 89(6): 509-16, 2001 Sep 14.
Article in English | MEDLINE | ID: mdl-11557738

ABSTRACT

Circulating monocytes adhere to platelets and matrix proteins at sites of vascular injury, where engagement of specific surface tethering molecules mediates outside-in signaling and synthesis of gene products by the leukocytes. Here we demonstrate that interaction of isolated human monocytes with collagen induces matrix metalloproteinase-9 (MMP-9; gelatinase B) synthesis by monocytes, a process that is greatly enhanced in the presence of platelets. MMP-9 is a potent matrix degrading enzyme implicated in atherosclerotic plaque rupture, aneurysm formation, and other vascular syndromes. Synthesis of MMP-9 by monocytes is tightly regulated and synergistically increased following adhesion to collagen and platelets. Adhesion to control matrix proteins alone did not result in MMP-9 protein production and, similarly, adhesion of monocytes to platelets activated with thrombin in suspension was not sufficient to induce MMP-9 synthesis in the absence of monocyte adhesion to collagen. Interruption of intercellular contact between platelets and monocytes dramatically inhibited MMP-9 synthesis. These observations demonstrate that discrete adhesion-dependent signaling pathways govern MMP-9 synthesis by monocytes. The synthesis of MMP-9 by monocytes may be critical in vascular syndromes and other pathological processes that are dependent on dysregulated cell-cell and cell-matrix interactions.


Subject(s)
Blood Platelets/cytology , Collagen/metabolism , Matrix Metalloproteinase 9/metabolism , Monocytes/cytology , Blood Platelets/drug effects , Blood Platelets/metabolism , Blotting, Western , Cell Adhesion/physiology , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Coculture Techniques , Collagen/pharmacology , Gene Expression Regulation/drug effects , Humans , Laminin/metabolism , Laminin/pharmacology , Matrix Metalloproteinase 9/drug effects , Matrix Metalloproteinase 9/genetics , Monocytes/drug effects , Monocytes/metabolism , Protein Binding , RNA, Messenger/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism
15.
J Cell Biol ; 154(3): 485-90, 2001 Aug 06.
Article in English | MEDLINE | ID: mdl-11489912

ABSTRACT

Platelets release preformed mediators and generate eicosanoids that regulate acute hemostasis and inflammation, but these anucleate cytoplasts are not thought to synthesize proteins or cytokines, or to influence inflammatory responses over time. Interrogation of an arrayed cDNA library demonstrated that quiescent platelets contain many messenger RNAs, one of which codes for interleukin 1beta precursor (pro-IL-1beta). Unexpectedly, the mRNA for IL-1beta and many other transcripts are constitutively present in polysomes, providing a mechanism for rapid synthesis. Platelet activation induces rapid and sustained synthesis of pro-IL-1beta protein, a response that is abolished by translational inhibitors. A portion of the IL-1beta is shed in its mature form in membrane microvesicles, and induces adhesiveness of human endothelial cells for neutrophils. Signal-dependent synthesis of an active cytokine over several hours indicates that platelets may have previously unrecognized roles in inflammation and vascular injury. Inhibition of beta3 integrin engagement markedly attenuated the synthesis of IL-1beta, identifying a new link between the coagulation and inflammatory cascades, and suggesting that antithrombotic therapies may also have novel antiinflammatory effects.


Subject(s)
Interleukin-1/genetics , Interleukin-1/immunology , Platelet Activation/immunology , Signal Transduction/immunology , Antigens, CD/physiology , Blood Coagulation/immunology , Cell Adhesion/immunology , Endothelium, Vascular/cytology , Endothelium, Vascular/immunology , Fibrin/physiology , Gene Expression/immunology , Humans , Integrin beta3 , Neutrophils/cytology , Neutrophils/immunology , Platelet Membrane Glycoproteins/physiology , Polyribosomes/genetics , Protein Biosynthesis/immunology , RNA, Messenger/analysis
16.
Proc Natl Acad Sci U S A ; 98(18): 10284-9, 2001 Aug 28.
Article in English | MEDLINE | ID: mdl-11517314

ABSTRACT

Engagement of adhesion molecules on monocytes and other myeloid leukocytes, which are effector cells of the innate immune system, not only tethers the leukocytes in place but also transmits outside-in signals that induce functional changes and alter gene expression. We found that a subset of mRNAs that are induced or amplified by adhesion of human monocytes to P-selectin via its surface ligand, P-selectin glycoprotein 1, have characteristics that suggest specialized translational control. One of these codes for urokinase plasminogen activator receptor (UPAR), a critical surface protease receptor and regulator of cell adhesion and migration. Although UPAR transcripts are induced by adhesion, rapid synthesis of the protein uses constitutive mRNA without a requirement for new transcription and is regulated by mammalian target of rapamycin, demonstrating new biologic roles for the signal-dependent translation pathway controlled by this intracellular kinase. The synthesis of UPAR in monocytic cells is also regulated by eukaryotic translation initiation factor 4E, a second key translational checkpoint, and phosphorylation of eukaryotic translation initiation factor 4E is induced by adhesion of monocytes to P-selectin. Translationally controlled display of UPAR by monocytes confers recognition of the matrix protein, vitronectin. Adhesion-dependent signaling from the plasma membrane to translational checkpoints represents a previously unrecognized mechanism for regulating surface phenotype that may be particularly important for myeloid leukocytes and other cells that are specialized for rapid inflammatory and vascular responses.


Subject(s)
Cell Adhesion/genetics , Gene Expression Regulation , Monocytes/physiology , Cell Membrane/physiology , Eukaryotic Initiation Factor-4E , Humans , P-Selectin/physiology , Peptide Initiation Factors/metabolism , Phenotype , Phosphorylation , Protein Biosynthesis , Protein Kinases/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Cell Surface/biosynthesis , Receptors, Urokinase Plasminogen Activator , Signal Transduction , TOR Serine-Threonine Kinases
17.
J Biol Chem ; 276(36): 33947-51, 2001 Sep 07.
Article in English | MEDLINE | ID: mdl-11431478

ABSTRACT

Recent evidence from our laboratory demonstrates that platelets synthesize numerous proteins in a signal-dependent fashion (Pabla, R., Weyrich, A. S., Dixon, D. A., Bray, P. F., McIntyre, T. M., Prescott, S. M., and Zimmerman, G. A. (1999) J. Cell Biol. 144, 175-184; Weyrich, A. S., Dixon, D. A., Pabla, R., Elstad, M. R., McIntyre, T. M., Prescott, S. M., and Zimmerman, G. A. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 5556-5561). Protein synthesis in platelets is controlled at the translational level; however, the mechanisms of regulation are not known. Here we demonstrate that translation initiation factors are redistributed to mRNA-rich areas in aggregated platelets, an event that induces protein synthesis. Interrogation of cDNA arrays revealed that platelet-derived mRNAs are primarily associated with the cytoskeletal core. In contrast, eukaryotic initiation factor 4E (eIF4E), the essential mRNA cap-binding protein that controls global translation rates, is localized in the membrane skeleton and soluble fraction of platelets, physically separated from most mRNAs. Platelet activation redistributes eIF4E to the cytoskeleton and increases interactions of eIF4E with mRNA cap structures. Redistribution of eIF4E to the mRNA-rich cytoskeleton coincides with a marked increase in protein synthesis, a process that is blocked when intracellular actin is disrupted. Additional studies demonstrated that beta(3) integrins are the primary membrane receptor that distributes eIF4E within the cell. These results imply that integrins link receptor-mediated pathways with mRNA-rich cytoskeletal domains and thereby modulate the organization of intracellular translational complexes. They also indicate that the functional status of eIF4E is regulated by its intracellular distribution.


Subject(s)
Blood Platelets/metabolism , Integrins/metabolism , Peptide Initiation Factors/biosynthesis , Protein Biosynthesis , Arachidonic Acid/metabolism , Cell Membrane/metabolism , Cytoskeleton/metabolism , DNA, Complementary/metabolism , Enzyme Inhibitors/pharmacology , Eukaryotic Initiation Factor-4E , Hemostatics/pharmacology , Humans , Oligonucleotide Array Sequence Analysis , Platelet Aggregation , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Protein Binding , RNA, Messenger/metabolism , Signal Transduction , Thrombin/metabolism , Time Factors , Transcription, Genetic
18.
Am J Physiol Heart Circ Physiol ; 278(5): H1537-44, 2000 May.
Article in English | MEDLINE | ID: mdl-10775131

ABSTRACT

Cellular phenotype is determined not only by genetic transcription but also by subsequent translation of mRNA into protein. Extracellular signals trigger intracellular pathways that distinctly activate translation. The 70/85-kDa S6 kinase (pp70(S6k)) is a central enzyme in the signal-dependent control of translation, but its regulation in endothelial cells is largely unknown. Here we show that fluid flow (in the absence of an exogenous mitogen) as well as humoral agonists activate endothelial pp70(S6k). Rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), and wortmannin, a phosphatidylinositol 3-kinase inhibitor, blocked flow-induced pp70(S6k) activation; FK-506, a rapamycin analog with minimal mTOR inhibitory activity, and PD-98059, an inhibitor of the flow-sensitive mitogen-activated protein kinase pathway, had no effect. Synthesis of Bcl-3, a protein whose translation is controlled by an mTOR-dependent pathway, was induced by flow and inhibited by rapamycin and wortmannin. Transcriptional blockade did not abolish the flow-induced upregulation of Bcl-3. Fluid forces may therefore modify endothelial phenotype by specifically regulating translation of certain mRNA transcripts into protein.


Subject(s)
Blood Flow Velocity/physiology , Endothelium, Vascular/enzymology , Protein Kinases , Ribosomal Protein S6 Kinases/metabolism , Transcription Factors/metabolism , 3T3 Cells , Androstadienes/pharmacology , Animals , B-Cell Lymphoma 3 Protein , Blotting, Western , Cells, Cultured , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Enzyme Activation/drug effects , Enzyme Activation/genetics , Humans , Immunosuppressive Agents/pharmacology , Mice , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Protein Isoforms/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/biosynthesis , RNA, Messenger/biosynthesis , Ribosomal Protein S6 Kinases/genetics , Sirolimus/pharmacology , Stress, Mechanical , TOR Serine-Threonine Kinases , Tacrolimus/pharmacology , Transcription, Genetic/physiology , Viscosity , Wortmannin
19.
J Cell Biol ; 144(1): 175-84, 1999 Jan 11.
Article in English | MEDLINE | ID: mdl-9885253

ABSTRACT

Integrins are widely expressed plasma membrane adhesion molecules that tether cells to matrix proteins and to one another in cell-cell interactions. Integrins also transmit outside-in signals that regulate functional responses of cells, and are known to influence gene expression by regulating transcription. In previous studies we found that platelets, which are naturally occurring anucleate cytoplasts, translate preformed mRNA transcripts when they are activated by outside-in signals. Using strategies that interrupt engagement of integrin alphaIIbbeta3 by fibrinogen and platelets deficient in this integrin, we found that alphaIIbbeta3 regulates the synthesis of B cell lymphoma 3 (Bcl-3) when platelet aggregation is induced by thrombin. We also found that synthesis of Bcl-3, which occurs via a specialized translation control pathway regulated by mammalian target of rapamycin (mTOR), is induced when platelets adhere to immobilized fibrinogen in the absence of thrombin and when integrin alphaIIbbeta3 is engaged by a conformation-altering antibody against integrin alphaIIbbeta3. Thus, outside-in signals delivered by integrin alphaIIbbeta3 are required for translation of Bcl-3 in thrombin-stimulated aggregated platelets and are sufficient to induce translation of this marker protein in the absence of thrombin. Engagement of integrin alpha2beta1 by collagen also triggered synthesis of Bcl-3. Thus, control of translation may be a general mechanism by which surface adhesion molecules regulate gene expression.


Subject(s)
Blood Platelets/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Protein Biosynthesis , Proto-Oncogene Proteins/biosynthesis , Antibodies, Monoclonal/immunology , B-Cell Lymphoma 3 Protein , Blood Platelets/drug effects , Cells, Cultured , Extracellular Space/metabolism , Humans , Platelet Aggregation , Platelet Glycoprotein GPIIb-IIIa Complex/immunology , Thrombin/pharmacology , Transcription Factors
20.
J Immunol ; 160(11): 5579-87, 1998 Jun 01.
Article in English | MEDLINE | ID: mdl-9605163

ABSTRACT

ICAM-3 is expressed at high levels on myeloid leukocytes, but its function on these cells is unknown. We tested the hypothesis that it transduces outside-in proinflammatory signals using immobilized mAbs to engage ICAM-3 on freshly isolated human monocytes and neutrophils. Two immobilized Abs that recognize epitopes in the extracellular domain 1 of ICAM-3, which is critical for recognition by the alphaL/beta2 integrin, potently induced secretion of MIP-1alpha, IL-8, and MCP-1 by monocytes and triggered IL-8 secretion by neutrophils. These chemokines are products of immediate-early genes that are induced when myeloid cells are activated. Chemokine secretion induced by "triggering" Abs was greater than that induced by isotype-matched immobilized Abs against ICAM-1, ICAM-2, PECAM-1, control Igs, or immobilized control proteins. Coengagement of ICAM-3 and Fc receptors (FcgammaRI or FcgammaRII) was required for maximal chemokine secretion by monocytes. Microscopy documented that there is also dramatic spreading of monocytes when surface ICAM-3 is engaged by immobilized Abs. Spreading was induced by Fab and F(ab')2 fragments of triggering anti-ICAM-3 mAb, demonstrating direct outside-in signaling, but was not required for chemokine secretion. These experiments indicate that ICAM-3 may transmit outside-in signals when it is engaged by beta2 integrins during myeloid cell-cell interactions in inflammatory lesions. Binding of Fc receptors by Ig in the local environment can amplify the responses.


Subject(s)
Antigens, CD , Antigens, Differentiation , Cell Adhesion Molecules/metabolism , Cell Movement/immunology , Chemokines/metabolism , Monocytes/metabolism , Neutrophils/metabolism , Receptors, Fc/metabolism , Adult , Antibodies, Monoclonal/pharmacology , Cell Adhesion Molecules/immunology , Humans , Monocytes/immunology , Neutrophils/immunology , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...