Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Dev Ind Pharm ; 45(3): 387-394, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30395728

ABSTRACT

OBJECTIVE: V565 is a novel oral anti-tumor necrosis factor (TNF)-α domain antibody being developed for topical treatment of inflammatory bowel disease (IBD) patients. Protein engineering rendered the molecule resistant to intestinal proteases. Here we investigate the formulation of V565 required to provide gastro-protection and enable optimal delivery to the lower intestinal tract in monkeys. METHODS: Enteric-coated V565 mini-tablets were prepared and dissolution characteristics tested in vitro. Oral dosing of monkeys with enteric-coated mini-tablets containing V565 and methylene blue dye enabled in vivo localization of mini-tablet dissolution. V565 distribution in luminal contents and feces was measured by enzyme-linked immunosorbent assay (ELISA). To mimic transit across the damaged intestinal epithelium seen in IBD patients an intravenous (i.v.) bolus of V565 was given to monkeys and pharmacokinetic parameters of V565 measured in serum and urine by ELISA. RESULTS: Enteric-coated mini-tablets resisted dissolution in 0.1 M HCl, before dissolving in a sustained release fashion at neutral pH. In orally dosed monkeys methylene blue intestinal staining indicated the jejunum and ileum as sites for mini-tablet dissolution. Measurements of V565 in monkey feces confirmed V565 survival through the intestinal tract. Systemic exposure after oral dosing was very low consistent with limited V565 mucosal penetration in healthy monkeys. The rapid clearance of V565 after i.v. dosing was consistent with renal excretion as the primary route for elimination of any V565 reaching the circulation. CONCLUSIONS: These results suggest that mini-tablets with a 24% Eudragit enteric coating are suitable for targeted release of orally delivered V565 in the intestine for topical treatment of IBD.


Subject(s)
Antibodies/administration & dosage , Antineoplastic Agents/administration & dosage , Ileum/drug effects , Inflammatory Bowel Diseases/economics , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Administration, Oral , Animals , Antibodies/metabolism , Antineoplastic Agents/pharmacokinetics , Chemistry, Pharmaceutical/methods , Feces , Hydrogen-Ion Concentration , Ileum/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Jejunum/drug effects , Jejunum/metabolism , Macaca fascicularis , Solubility , Tablets, Enteric-Coated/administration & dosage , Tablets, Enteric-Coated/pharmacokinetics
2.
Antonie Van Leeuwenhoek ; 86(1): 77-85, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15103239

ABSTRACT

Lipidated macroamphiphiles such as the lipoteichoic acids and mycobacterial lipoarabinomannans are cell envelope components of Gram-positive bacteria that have been extensively associated with the pathogenesis of disease. In order to study such associations, purification of these macroamphiphiles is essential for resolving their structures and diverse biological effects. We describe herein a method for purification of lipoglycan components from Propionibacterium acnes. This method uses the existing phenol-water extraction, followed by hydrophobic interaction chromatography and an additional purification step that utilises preparative electrophoresis for the separation of two lipoglycan components. Analysis of these lipoglycans revealed evidence for a lipid anchor based on fatty acids whilst the polysaccharide moiety contained significant amounts of mannose, glucose and galactose, together with an amino sugar suspected of being a diaminohexuronic acid. These latter components have been previously identified as components of the P. acnes cell wall polysaccharide. Consequently, it is proposed that there may be a relationship between the structures of these distinctive cell envelope polymers.


Subject(s)
Lipopolysaccharides/chemistry , Lipopolysaccharides/isolation & purification , Propionibacterium acnes/chemistry , Chromatography/methods , Electrophoresis, Polyacrylamide Gel , Fatty Acids/analysis , Fatty Acids/isolation & purification , Galactose/analysis , Galactose/isolation & purification , Glucose/analysis , Glucose/isolation & purification , Hexuronic Acids/analysis , Hexuronic Acids/isolation & purification , Hydrophobic and Hydrophilic Interactions , Mannose/analysis , Mannose/isolation & purification , Polysaccharides, Bacterial/analysis , Polysaccharides, Bacterial/isolation & purification , Propionibacterium acnes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...