Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 1(7): 364-373, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26539562

ABSTRACT

Glutamate racemase (GR) catalyzes the cofactor independent stereoinversion of l- to d-glutamate for biosynthesis of bacterial cell walls. Because of its essential nature, this enzyme is under intense scrutiny as a drug target for the design of novel antimicrobial agents. However, the flexibility of the enzyme has made inhibitor design challenging. Previous steered molecular dynamics (MD), docking, and experimental studies have suggested that the enzyme forms highly varied complexes with different competitive inhibitor scaffolds. The current study employs a mutant orthogonal tRNA/aminoacyl-tRNA synthetase pair to genetically encode a non-natural fluorescent amino acid, l-(7-hydroxycoumarin-4-yl) ethylglycine (7HC), into a region (Tyr53) remote from the active site (previously identified by MD studies as undergoing ligand-associated changes) to generate an active mutant enzyme (GRY53/7HC). The GRY53/7HC enzyme is an active racemase, which permitted us to examine the nature of these idiosyncratic ligand-associated phenomena. One type of competitive inhibitor resulted in a dose-dependent quenching of the fluorescence of GRY53/7HC, while another type of competitive inhibitor resulted in a dose-dependent increase in fluorescence of GRY53/7HC. In order to investigate the environmental changes of the 7HC ring system that are distinctly associated with each of the GRY53/7HC-ligand complexes, and thus the source of the disparate quenching phenomena, a parallel computational study is described, which includes essential dynamics, ensemble docking and MD simulations of the relevant GRY53/7HC-ligand complexes. The changes in the solvent exposure of the 7HC ring system due to ligand-associated GR changes are consistent with the experimentally observed quenching phenomena. This study describes an approach for rationally predicting global protein allostery resulting from enzyme ligation to distinctive inhibitor scaffolds. The implications for fragment-based drug discovery and high throughput screening are discussed.

2.
Biochim Biophys Acta ; 1854(8): 1019-37, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25900361

ABSTRACT

The Enzyme Function Initiative, an NIH/NIGMS-supported Large-Scale Collaborative Project (EFI; U54GM093342; http://enzymefunction.org/), is focused on devising and disseminating bioinformatics and computational tools as well as experimental strategies for the prediction and assignment of functions (in vitro activities and in vivo physiological/metabolic roles) to uncharacterized enzymes discovered in genome projects. Protein sequence similarity networks (SSNs) are visually powerful tools for analyzing sequence relationships in protein families (H.J. Atkinson, J.H. Morris, T.E. Ferrin, and P.C. Babbitt, PLoS One 2009, 4, e4345). However, the members of the biological/biomedical community have not had access to the capability to generate SSNs for their "favorite" protein families. In this article we announce the EFI-EST (Enzyme Function Initiative-Enzyme Similarity Tool) web tool (http://efi.igb.illinois.edu/efi-est/) that is available without cost for the automated generation of SSNs by the community. The tool can create SSNs for the "closest neighbors" of a user-supplied protein sequence from the UniProt database (Option A) or of members of any user-supplied Pfam and/or InterPro family (Option B). We provide an introduction to SSNs, a description of EFI-EST, and a demonstration of the use of EFI-EST to explore sequence-function space in the OMP decarboxylase superfamily (PF00215). This article is designed as a tutorial that will allow members of the community to use the EFI-EST web tool for exploring sequence/function space in protein families.


Subject(s)
Databases, Protein , Orotidine-5'-Phosphate Decarboxylase/chemistry , Orotidine-5'-Phosphate Decarboxylase/genetics , Sequence Analysis, Protein , Software , Internet
3.
J Chem Inf Model ; 53(9): 2349-59, 2013 Sep 23.
Article in English | MEDLINE | ID: mdl-24111836

ABSTRACT

Glutamate racemase (GR) is a cofactor independent amino acid racemase that has recently garnered increasing attention as an antimicrobial drug target. There are numerous high resolution crystal structures of GR, yet these are invariably bound to either D-glutamate or very weakly bound oxygen-based salts. Recent in silico screens have identified a number of new competitive inhibitor scaffolds, which are not based on D-Glu, but exploit many of the same hydrogen bond donor positions. In silico studies on 1-H-benzimidazole-2-sulfonic acid (BISA) show that the sulfonic acid points to the back of the GR active site, in the most buried region, analogous to the C2-carboxylate binding position in the GR-d-glutamate complex. Furthermore, BISA has been shown to be the strongest nonamino acid competitive inhibitor. Previously published computational studies have suggested that a portion of this binding strength is derived from complexation with a more closed active site, relative to weaker ligands, and in which the internal water network is more isolated from the bulk solvent. In order to validate key contacts between the buried sulfonate moiety of BISA and moieties in the back of the enzyme active site, as well as to probe the energetic importance of the potentially large number of interstitial waters contacted by the BISA scaffold, we have designed several mutants of Asn75. GR-N75A removes a key hydrogen bond donor to the sulfonate of BISA, but also serves to introduce an additional interstitial water, due to the newly created space of the mutation. GR- N75L should also show the loss of a hydrogen bond donor to the sulfonate of BISA, but does not (a priori) seem to permit an additional interstitial water contact. In order to investigate the dynamics, structure, and energies of this water-mediated complexation, we have employed the extended linear response (ELR) approach for the calculation of binding free energies to GR, using the YASARA2 knowledge based force field on a set of ten GR complexes, and yielding an R-squared value of 0.85 and a RMSE of 2.0 kJ/mol. Surprisingly, the inhibitor set produces a uniformly large interstitial water contribution to the electrostatic interaction energy (), ranging from 30 to >50%, except for the natural substrate (D-glutamate), which has only a 7% contribution of from water. The broader implications for predicting and exploiting significant interstitial water contacts in ligand-enzyme complexation are discussed.


Subject(s)
Amino Acid Isomerases/chemistry , Amino Acid Isomerases/metabolism , Molecular Dynamics Simulation , Water/metabolism , Amino Acid Isomerases/antagonists & inhibitors , Amino Acid Isomerases/genetics , Bacillus subtilis/enzymology , Catalytic Domain , Enzyme Inhibitors/pharmacology , Kinetics , Ligands , Mutation , Protein Binding , Thermodynamics
4.
ChemMedChem ; 8(10): 1681-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23929705

ABSTRACT

A novel lead compound for inhibition of the antibacterial drug target, glutamate racemase (GR), was optimized for both ligand efficiency and lipophilic efficiency. A previously developed hybrid molecular dynamics-docking and scoring scheme, FERM-SMD, was used to predict relative potencies of potential derivatives prior to chemical synthesis. This scheme was successful in distinguishing between high- and low-affinity binders with minimal experimental structural information, saving time and resources in the process. In vitro potency was increased approximately fourfold against GR from the model organism, B. subtilis. Lead derivatives show two- to fourfold increased antimicrobial potency over the parent scaffold. In addition, specificity toward B. subtilis over E. coli and S. aureus depends on the substituent added to the parent scaffold. Finally, insight was gained into the capacity for these compounds to reach the target enzyme in vivo using a bacterial cell wall lysis assay. The outcome of this study is a novel small-molecule inhibitor of GR with the following characteristics: Ki=2.5 µM, LE=0.45 kcal mol(-1) atom(-1), LiPE=6.0, MIC50=260 µg mL(-1) against B. subtilis, EC50, lysis=520 µg mL(-1) against B. subtilis.


Subject(s)
Amino Acid Isomerases/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Enzyme Inhibitors/chemistry , Amino Acid Isomerases/metabolism , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Benzimidazoles/chemistry , Binding Sites , Catalytic Domain , Drug Design , Enzyme Inhibitors/pharmacology , Escherichia coli/drug effects , Ligands , Microbial Sensitivity Tests , Molecular Docking Simulation , Staphylococcus aureus/drug effects , Sulfonic Acids/chemical synthesis , Sulfonic Acids/chemistry , Sulfonic Acids/pharmacology
5.
Mol Inform ; 30(5): 459-471, 2011 May 16.
Article in English | MEDLINE | ID: mdl-21738559

ABSTRACT

Existing techniques which attempt to predict the affinity of protein-ligand interactions have demonstrated a direct relationship between computational cost and prediction accuracy. We present here the first application of a hybrid ensemble docking and steered molecular dynamics scheme (with a minimized computational cost), which achieves a binding affinity rank-ordering of ligands with a Spearman correlation coefficient of 0.79 and an RMS error of 0.7 kcal/mol. The scheme, termed Flexible Enzyme Receptor Method by Steered Molecular Dynamics (FERM-SMD), is applied to an in-house collection of 17 validated ligands of glutamate racemase. The resulting improved accuracy in affinity prediction allows elucidation of the key structural components of a heretofore unreported glutamate racemase inhibitor (K(i) = 9 µM), a promising new lead in the development of antibacterial therapeutics.

6.
J Phys Chem B ; 115(13): 3416-24, 2011 Apr 07.
Article in English | MEDLINE | ID: mdl-21395329

ABSTRACT

Enzyme inhibition via allostery, in which the ligand binds remotely from the active site, is a poorly understood phenomenon and represents a significant challenge to structure-based drug design. Dipicolinic acid (DPA), a major component of Bacillus spores, is shown to inhibit glutamate racemase from Bacillus anthracis , a monosubstrate/monoproduct enzyme, in a novel allosteric fashion. Glutamate racemase has long been considered an important drug target for its integral role in bacterial cell wall synthesis. The DPA binding mode was predicted via multiple docking studies and validated via site-directed mutagenesis at the binding locus, while the mechanism of inhibition was elucidated with a combination of Blue Native polyacrylamide gel electrophoresis, molecular dynamics simulations, and free energy and pK(a) calculations. Inhibition by DPA not only reveals a novel cryptic binding site but also represents a form of allosteric regulation that exploits the interplay between enzyme conformational changes, fluctuations in the pK(a) values of buried residues and catalysis. The potential for future drug development is discussed.


Subject(s)
Amino Acid Isomerases/chemistry , Molecular Dynamics Simulation , Allosteric Regulation , Amino Acid Isomerases/genetics , Amino Acid Isomerases/metabolism , Binding Sites , Biocatalysis , Kinetics , Mutagenesis, Site-Directed , Picolinic Acids/chemistry , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
7.
ACS Med Chem Lett ; 1(1): 9-13, 2010 Apr 08.
Article in English | MEDLINE | ID: mdl-20634968

ABSTRACT

Glutamate racemase is an attractive antimicrobial drug target. Virtual screening using a transition-state conformation of the enzyme resulted in the discovery of several µM competitive inhibitors, dissimilar from current amino acid-like inhibitors, providing novel scaffolds for drug discovery. The most effective of these competitive inhibitors possesses a very high ligand efficiency value of -0.6 kcal/mol/heavy atom, and is effective against three distinct glutamate racemases representing two species of Bacillus. The benefits of employing the transition-state conformation of the receptor in virtual screening are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...