Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Food Chem ; 452: 139576, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38735109

ABSTRACT

Hemin dissociation occurs much faster from fish methemoglobin (metHb) compared to mammalian metHb yet the mechanism remains poorly understood. This may involve enhanced solvent access to His(E7) of fish metHbs by a protonation mechanism. Plasma induced modification of biomolecules (PLIMB) produces free radicals that covalently modify solvent accessible residues of proteins, and so can provide insight regarding accessibility of hydronium ions to protonate His(E7). PLIMB-induced modifications to heme crevice sites of trout IV and bovine metHb were determined using tandem mass spectrometry after generating peptides with Trypsin/Lys-C. αHis(CE3) was more modified in trout attributable to the more dynamic nature of bovine αHis(CE3) from available crystal structures. Although His(E7) was not found to be more modified in trout, aspects of trout peptides containing His(E7) hampered modification determinations. An existing computational structure-based approach was also used to estimate protonation tendencies, suggesting His(E7) of metHbs with low hemin affinity are more protonatable.


Subject(s)
Fish Proteins , Hemin , Methemoglobin , Animals , Hemin/chemistry , Cattle , Fish Proteins/chemistry , Methemoglobin/chemistry , Trout/metabolism , Tandem Mass Spectrometry
2.
Sci Rep ; 14(1): 1943, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38253742

ABSTRACT

The relationship between hemolysis and lipid oxidation was explored in red blood cell (RBCs)-spiked washed cod mince (WCM). At pH 6.8 and 3 ± 1 °C, intact RBCs (71 µM Hb) delayed lipid oxidation by 1 day compared to WCM with partly or fully lysed RBCs which oxidized immediately. Intact RBCs also lowered peak peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) with up to 59.5% and 48.1%, respectively. Adding 3% (v/w) blood plasma to RBC-spiked WCM delayed the lipid oxidation onset from 1 to 3-4 days without delaying hemolysis. At pH 6.4 the oxidation onset in RBC-WCM was the same as for pH 6.8 while at pH 7.2-7.6 lipid oxidation was suppressed for 7 days. Micrographs revealed RBC-lysis from day 2 at pH 6.4 but at pH 7.6, RBC stayed intact for ≥ 7 days. Thus, assuring presence of plasma-derived antioxidants and/or elevating muscle pH to avoid hemolysis can aid valorization of blood rich underutilized fish raw materials.


Subject(s)
Hemolysis , Muscles , Animals , Plasma , Erythrocytes , Fishes , Lipids , Hydrogen-Ion Concentration
3.
FEBS Open Bio ; 11(12): 3293-3303, 2021 12.
Article in English | MEDLINE | ID: mdl-34510823

ABSTRACT

It is well documented that caffeic acid (3,4-dihydroxycinnamic acid) (CA) interacts with and inhibits the oxidative reactions of myoglobin (Mb) and hemoglobin (Hb), and this interaction underlies its antioxidative action in meat. Sickle cell hemoglobin (HbS) is known for its tendency to oxidize more readily than normal HbA in the presence of hydrogen peroxide (H2 O2 ), which leads to a more persistent and highly oxidizing ferryl Hb (HbFe4+ ). We have investigated the effects of CA on HbS oxidation intermediates, specifically on the ferric/ferryl forms. At a low concentration of H2 O2 (0.5-fold over heme), we observed a fivefold reduction in the amount of HbFe4+ accumulated in a mixture of ferric and H2 O2 solution. Higher levels of H2 O2 (onefold and twofold over heme) led to a lesser threefold and twofold reduction in the content of HbFe4+ , respectively, possibly due to the saturation of the binding sites on the Hb molecule. The most intriguing finding was that when 5-molar excess CA over heme was used, and a considerable increase in the delay time of HbS polymerization to approximately 200 s was observed. This delay in polymerization of HbS is theoretically sufficient to avoid microcapillary blockage and prevent vasoconstrictions in vivo. Mass spectrometry analysis indicated that CA was more extensively covalently bonded to ßCys93 than to ßCys112 and αCys104 . The dual antioxidant and antisickling properties of CA may be explored further to maximize its therapeutic potential in SCD.


Subject(s)
Caffeic Acids/metabolism , Caffeic Acids/pharmacology , Hemoglobin, Sickle/metabolism , Antioxidants/metabolism , Caffeic Acids/chemistry , Hemoglobin, Sickle/chemistry , Hemoglobin, Sickle/drug effects , Hemoglobins/metabolism , Humans , Hydrogen Peroxide/pharmacology , Iron/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL