Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 263(Pt A): 114411, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32247199

ABSTRACT

The long-term effect of heavy metals on soil microbial communities and their function is relatively unknown and little work has been done in field settings. To address this gap, we revisited a field-based experiment, 12 years after the application of copper (Cu) to agricultural soils, with treatment concentrations ranging from 0 to 3310 mg Cu kg-1 soil. We measured the long-term effects of Cu exposure to soils using multiple functionality assessments and environmental DNA-based community analyses. The assessment results revealed that soils that received moderate to high Cu doses had still not recovered functionality 12-years post exposure. However, plots that received doses of 200 mg kg-1 Cu or less appeared to have a functionality index not dissimilar to control plots. Environmental DNA analyses of the microbial communities revealed a high level of beta diversity in low Cu treatment plots, whereas communities within high Cu treatment plots had similar community structures to one another (low beta diversity), indicating that specific Cu-tolerant or dormant taxa are selected for in high-Cu environments. Interestingly, high Cu plots had higher within-sample taxa counts (alpha diversity) compared with controls and low Cu plots. We hypothesise that taxa in high Cu plots activated dormancy mechanisms, such that their genetic signal remained present, whilst the functionality of the soil was reduced. Many species identified in high Cu plots are known to have associated dormancy mechanisms and survive in high stress environments. Understanding how these mechanisms collectively contribute to contaminant outcomes is of great importance for the goals of predicting and managing microbial communities and their function. As we found that Cu concentrations above 200 mg kg-1 can cause significant functionality loss and a selective pressure on microbial communities, it is recommended that Cu concentrations above 200 mg kg-1are avoided in agricultural soils.


Subject(s)
Microbiota , Soil Pollutants/analysis , Copper , Soil , Soil Microbiology
2.
Aust Vet J ; 69(8): 177-81, 1992 Aug.
Article in English | MEDLINE | ID: mdl-1530551

ABSTRACT

The disposal of sewage wastes may cause severe environmental problems as was graphically demonstrated with pollution on Sydney's ocean beaches in recent years. Sewage sludges contain valuable plant nutrients and organic matter which can improve the fertility and structure of the soil. However, human parasites, pathogenic micro-organisms and chemicals capable of causing soil contamination, phytotoxicity and residues in animal products may also be present. Although sewage sludge is frequently spread on agricultural land overseas, it is not common in Australia and most states do not have specific regulations to minimise risk and promote good practice. A sludge-to-land program began in the Sydney region in 1990. It follows guidelines written by NSW Agriculture to encourage beneficial agricultural use of sludge by adoption of environmentally sustainable practices. This article describes the major risks to the food-chain and the environment, which may be associated with applying sewage sludge to agricultural land. It summarises how the risks are managed, and where further research data are required.


Subject(s)
Infections/etiology , Sewage , Soil Microbiology , Soil Pollutants , Water Pollution, Chemical , Animals , Australia , Humans , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...