Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 103: 299-305, 2014 May.
Article in English | MEDLINE | ID: mdl-24405965

ABSTRACT

Ross Lake lies within the City of Flin Flon (Manitoba, Canada), a mining community originally formed by the Hudson Bay Mining and Smelting Company (now Hudbay Minerals Inc.) in 1927. At the time of this investigation, a continuous effluent stream from Hudbay Minerals (approximately 80 years) and a discontinuous and unknown amount of raw and minimally treated municipal sewage (>20 years, likely ending in 1951) was discharged into the north basin of the lake. Maximum concentrations of fecal sterols, such as coprostanol and terrestrial phytosterols, such as: ß-sitosterol, campesterol, stigmastanol were measured in vertical sections of sediment cores, collected from Ross Lake, in the 15-16-cm section, which likely corresponds to the 1930s. Concentrations of coprostanol increased from <1 µg g(-1) in older sediments, to 252.3 µg g(-1) organic carbon at the peak. Observed changes in concentrations of sterols, in combination with radiometric dating and changes to sediment physicochemical characteristics, support the conclusion that sediments of a depth of less than 17.5-cm depth were deposited during the post-industrial era from approximately 1930 onwards. Ratios of coprostanol to cholesterol>1, peaking at 3.6 are consistent with anecdotal information that municipal sewage was discharged into Ross Lake during the early years of urbanization, prior to changes in treatment of sewage and discharge practices that began in 1951. Finally, historical concentrations of terrestrial phytosterols followed trends similar to those of coprostanol and cholesterol and may possibly be the result of an increase in the flux of terrestrial organic matter into Ross Lake as the result of regional deforestation due to logging and fire.


Subject(s)
Lakes/chemistry , Sewage/chemistry , Waste Disposal, Fluid , Water Pollutants/analysis , Water Purification , Cholesterol/analogs & derivatives , Cholesterol/analysis , Cholesterol/history , Environmental Monitoring , Feces/chemistry , Geologic Sediments/chemistry , History, 20th Century , History, 21st Century , Manitoba , Phytosterols/analysis , Phytosterols/history , Sitosterols/analysis , Sitosterols/history , Waste Disposal, Fluid/history , Water Pollutants/history , Water Purification/history
2.
Philos Trans A Math Phys Eng Sci ; 360(1796): 1409-31, 2002 Jul 15.
Article in English | MEDLINE | ID: mdl-12804257

ABSTRACT

Recent floods in the UK have raised public and political awareness of flood risk. There is an increasing recognition that flood management and land-use planning are linked, and that decision-support modelling tools are required to address issues of climate and land-use change for integrated catchment management. In this paper, the scientific context for fluvial flood modelling is discussed, current modelling capability is considered and research challenges are identified. Priorities include (i) appropriate representation of spatial precipitation, including scenarios of climate change; (ii) development of a national capability for continuous hydrological simulation of ungauged catchments; (iii) improved scientific understanding of impacts of agricultural land-use and land-management change, and the development of new modelling approaches to represent those impacts; (iv) improved representation of urban flooding, at both local and catchment scale; (v) appropriate parametrizations for hydraulic simulation of in-channel and flood-plain flows, assimilating available ground observations and remotely sensed data; and (vi) a flexible decision-support modelling framework, incorporating developments in computing, data availability, data assimilation and uncertainty analysis.


Subject(s)
Climate , Disasters , Fresh Water , Models, Statistical , Rain , Computer Simulation , Decision Support Techniques , Disaster Planning/methods , Disaster Planning/trends , Forecasting/methods , Risk Assessment/methods , Risk Assessment/trends , Stochastic Processes , United Kingdom , Water Movements
3.
Environ Pollut ; 100(1-3): 151-77, 1999.
Article in English | MEDLINE | ID: mdl-15093116

ABSTRACT

Mathematical models of radionuclide distribution and transport in the environment have been developed to assess the impact on people of routine and accidental releases of radioactivity from a variety of nuclear activities, including: weapons development, production, and testing; power production; and waste disposal. The models are used to estimate human exposures and doses in situations where measurements have not been made or would be impossible or impractical to make. Model results are used to assess whether nuclear facilities are operated in compliance with regulatory requirements, to determine the need for remediation of contaminated sites, to estimate the effects on human health of past releases, and to predict the potential effects of accidental releases or new facilities. This paper describes the various applications and types of models currently used to represent the distribution and transport of radionuclides in the terrestrial and aquatic environments, as well as integrated global models for selected radionuclides and special issues in the fields of solid radioactive waste disposal and dose reconstruction. Particular emphasis is placed on the issue of improving confidence in the model results, including the importance of uncertainty analysis and of model verification and validation.

SELECTION OF CITATIONS
SEARCH DETAIL
...