Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 9(16): e2105723, 2022 May.
Article in English | MEDLINE | ID: mdl-35404540

ABSTRACT

The performance of Li+ ion batteries (LIBs) is hindered by steep Li+ ion concentration gradients in the electrodes. Although thick electrodes (≥300 µm) have the potential for reducing the proportion of inactive components inside LIBs and increasing battery energy density, the Li+ ion concentration gradient problem is exacerbated. Most understanding of Li+ ion diffusion in the electrodes is based on computational modeling because of the low atomic number (Z) of Li. There are few experimental methods to visualize Li+ ion concentration distribution of the electrode within a battery of typical configurations, for example, coin cells with stainless steel casing. Here, for the first time, an interrupted in situ correlative imaging technique is developed, combining novel, full-field X-ray Compton scattering imaging with X-ray computed tomography that allows 3D pixel-by-pixel mapping of both Li+ stoichiometry and electrode microstructure of a LiNi0.8 Mn0.1 Co0.1 O2 cathode to correlate the chemical and physical properties of the electrode inside a working coin cell battery. An electrode microstructure containing vertically oriented pore arrays and a density gradient is fabricated. It is shown how the designed electrode microstructure improves Li+ ion diffusivity, homogenizes Li+ ion concentration through the ultra-thick electrode (1 mm), and improves utilization of electrode active materials.

2.
Sensors (Basel) ; 20(10)2020 May 12.
Article in English | MEDLINE | ID: mdl-32408497

ABSTRACT

Since the late 2000s, the availability of high-quality cadmium zinc telluride (CdZnTe) has greatly increased. The excellent spectroscopic performance of this material has enabled the development of detectors with volumes exceeding 1 cm3 for use in the detection of nuclear materials. CdZnTe is also of great interest to the photon science community for applications in X-ray imaging cameras at synchrotron light sources and free electron lasers. Historically, spatial variations in the crystal properties and temporal instabilities under high-intensity irradiation has limited the use of CdZnTe detectors in these applications. Recently, Redlen Technologies have developed high-flux-capable CdZnTe material (HF-CdZnTe), which promises improved spatial and temporal stability. In this paper, the results of the characterization of 10 HF-CdZnTe detectors with dimensions of 20.35 mm × 20.45 mm × 2.00 mm are presented. Each sensor has 80 × 80 pixels on a 250-m pitch and were flip-chip-bonded to the STFC HEXITEC ASIC. These devices show excellent spectroscopic performance at room temperature, with an average Full Width at Half Maximum (FWHM) of 0.83 keV measured at 59.54 keV. The effect of tellurium inclusions in these devices was found to be negligible; however, some detectors did show significant concentrations of scratches and dislocation walls. An investigation of the detector stability over 12 h of continuous operation showed negligible changes in performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...