Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Cancer ; 101(7): 1183-93, 2009 Oct 06.
Article in English | MEDLINE | ID: mdl-19707198

ABSTRACT

BACKGROUND: The key mediator of new vessel formation in cancer and other diseases is VEGF-A. VEGF-A exists as alternatively spliced isoforms - the pro-angiogenic VEGF(xxx) family generated by exon 8 proximal splicing, and a sister family, termed VEGF(xxx)b, exemplified by VEGF(165)b, generated by distal splicing of exon 8. However, it is unknown whether this anti-angiogenic property of VEGF(165)b is a general property of the VEGF(xxx)b family of isoforms. METHODS: The mRNA and protein expression of VEGF(121)b was studied in human tissue. The effect of VEGF(121)b was analysed by saturation binding to VEGF receptors, endothelial migration, apoptosis, xenograft tumour growth, pre-retinal neovascularisation and imaging of biodistribution in tumour-bearing mice with radioactive VEGF(121)b. RESULTS: The existence of VEGF(121)b was confirmed in normal human tissues. VEGF(121)b binds both VEGF receptors with similar affinity as other VEGF isoforms, but inhibits endothelial cell migration and is cytoprotective to endothelial cells through VEGFR-2 activation. Administration of VEGF(121)b normalised retinal vasculature by reducing both angiogenesis and ischaemia. VEGF(121)b reduced the growth of xenografted human colon tumours in association with reduced microvascular density, and an intravenous bolus of VEGF(121)b is taken up into colon tumour xenografts. CONCLUSION: Here we identify a second member of the family, VEGF(121)b, with similar properties to those of VEGF(165)b, and underline the importance of the six amino acids of exon 8b in the anti-angiogenic activity of the VEGF(xxx)b isoforms.


Subject(s)
Neoplasms/prevention & control , Neovascularization, Pathologic/prevention & control , Vascular Endothelial Growth Factor A/physiology , Aged , Aged, 80 and over , Alternative Splicing , Animals , Apoptosis , Cell Line, Tumor , Cell Movement , Colon/chemistry , Colonic Neoplasms/chemistry , Endothelial Cells/physiology , Female , Humans , Male , Mice , Middle Aged , Neoplasms/pathology , Protein Isoforms , Tissue Distribution , Vascular Endothelial Growth Factor A/pharmacokinetics
2.
Planta ; 212(3): 404-15, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11289605

ABSTRACT

A cell suspension culture of a tobacco (Nicotiana tabacum L. cv. Petit Havana) cell line derived from a cultivar transformed with the Tcyt gene from Agrobacterium, which leads to high endogenous levels of cytokinin, has been established. This cell line shows increased cell aggregation, elongated cells and a 5-fold increase in wall thickness. If allowed to carry on growing it can form a single mass without shedding cells into the medium. When analysed at an earlier growth stage, these cultures were found to produce improved levels of vascular nodule formation than in other systems that employ exogenous cytokinin. This differentiation was optimised with respect to sucrose and auxin signals in order to induce maximum production of cells with thickened walls and a morphology characteristic of fibre cells and tracheids, in addition to cells that remain meristematic. In order to establish the validity of this system for studying secondary wall formation, the walls and associated biosynthetic changes were analysed in these cells by chemical analysis of the walls, changes in activities of enzymes of xylan and monolignol synthesis, and expression of mRNAs coding for enzymes of lignin biosynthesis. The wall composition of the transformed cells was compared with that determined for primary walls from a typical untransformed tobacco cell line. Recovery of wall material was 50% greater in the transformed culture. In this material a major difference was found in the pectin fraction where there was a distinct difference in size distribution together with a lower level of methylation for the transformed line, which may be related to increased adhesiveness. There were increased amounts of xylan, although the ratio of xyloglucan to xylan content was not substantially different due to the mixture of cell types. There was also an increase in cellulose and phenolic components. Increased activity of enzymes involved in the synthesis of xylan as a marker for the secondary wall occurred around the time of tracheid differentiation and coincided with a broad peak of cinnamyl alcohol dehydrogenase activity. The expression of mRNAs coding for enzymes of the general phenylpropanoid pathway, phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, catechol O-methyl transferase was relatively constitutive in the cultures while transcripts of ferulate 5-hydroxylase, cinnamoyl CoA-reductase, cinnamyl alcohol dehydrogenase and lignin peroxidase were induced. The walls of the transformed cells also showed considerable differences in the subset of extractable proteins from that found in primary walls of tobacco when these were subjected to proteomic analysis. Many of these proteins appear to be novel and not present in primary walls. However an Mr-32,000 chitinase, an Mr-34,000 peroxidase, an Mr-65,000 polyphenoloxidase/laccase and possibly an Mr-68,000 xylanase could be identified as well as structural proteins.


Subject(s)
Cell Wall/chemistry , Nicotiana/metabolism , Plant Proteins/analysis , Plants, Toxic , Proteome , Alcohol Oxidoreductases/metabolism , Amino Acid Sequence , Cell Wall/metabolism , Cell Wall/ultrastructure , Cells, Cultured , Cellulose/biosynthesis , Cytochrome P-450 Enzyme System/metabolism , Cytokinins , Gene Expression Regulation, Plant , Genome, Plant , Lignin/biosynthesis , Mixed Function Oxygenases/metabolism , Molecular Sequence Data , Pentosyltransferases/metabolism , Phenols/analysis , Phenotype , Phenylalanine Ammonia-Lyase/metabolism , Plant Proteins/metabolism , Polysaccharides/analysis , RNA, Messenger/metabolism , Sequence Homology, Amino Acid , Nicotiana/genetics , Nicotiana/ultrastructure , Trans-Cinnamate 4-Monooxygenase , Transferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...