Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Vis Exp ; (192)2023 02 17.
Article in English | MEDLINE | ID: mdl-36876937

ABSTRACT

Newborns ingest maternal E. coli strains that colonize their intestinal tract around the time of delivery. E. coli strains with the ability to translocate across the gut invade the newborn's bloodstream, causing life-threatening bacteremia. The methodology presented here utilizes polarized intestinal epithelial cells grown on semipermeable inserts to assess the transcytosis of neonatal E. coli bacteremia isolates in vitro. This method uses the established T84 intestinal cell line that has the ability to grow to confluence and form tight junctions and desmosomes. After reaching confluence, mature T84 monolayers develop transepithelial resistance (TEER), which can be quantified using a voltmeter. The TEER values are inversely correlated with the paracellular permeability of extracellular components, including bacteria, across the intestinal monolayer. The transcellular passage of bacteria (transcytosis), on the other hand, does not necessarily alter the TEER measurements. In this model, bacterial passage across the intestinal monolayer is quantified for up to 6 h post-infection, and repeated measurements of TEER are made to monitor the paracellular permeability. In addition, this method facilitates the use of techniques such as immunostaining to study the structural changes in tight junctions and other cell-to-cell adhesion proteins during bacterial transcytosis across the polarized epithelium. The use of this model contributes to the characterization of the mechanisms by which neonatal E. coli transcytose across the intestinal epithelium to produce bacteremia.


Subject(s)
Bacteremia , Escherichia coli , Infant, Newborn , Humans , Cell Line , Epithelium , Transcytosis
2.
Article in English | MEDLINE | ID: mdl-36444378

ABSTRACT

Introduction: The symptoms of Amyotrophic Lateral Sclerosis (ALS) include muscle weakness and eventual paralysis. These symptoms result from denervation of the neuromuscular junction (NMJ) and motor neuron cell death in the brain and spinal cord. Due to the "dying back" pattern of motor neuron degeneration, protecting NMJs should be a therapeutic priority. Although exercise has the potential to protect against NMJ denervation, its use in ALS has been controversial. Most preclinical studies have focused on aerobic exercise, which report that exercise can be beneficial at moderate intensities. The effects of resistance exercise on NMJ preservation in limb muscles have not been explored. Methods: We trained male SOD1-G93A rats, which model ALS, to perform a unilateral isometric forelimb resistance exercise task. This task allows within-animal comparisons of trained and untrained forelimbs. We then determined the effects of isometric resistance exercise on NMJ denervation and AMP kinase (AMPK) activation in forelimb muscles. Results: Our results revealed that SOD1-G93A rats were able to learn and perform the task similarly to wildtype rats, even after loss of body weight. SOD1-G93A rats exhibited significantly greater NMJ innervation in their trained vs their untrained forelimb biceps muscles. Measures of activated (phosphorylated) AMPK (pAMPK) were also greater in the trained vs untrained forelimb triceps muscles. Discussion: These results demonstrate that isometric resistance exercise may protect against NMJ denervation in ALS. Future studies are required to determine the extent to which our findings generalize to female SOD1-G93A rats and to other subtypes of ALS.

3.
J Alzheimers Dis Rep ; 5(1): 469-475, 2021.
Article in English | MEDLINE | ID: mdl-34368631

ABSTRACT

BACKGROUND: Aerobic capacity is associated with metabolic, cardiovascular, and neurological health. Low-capacity runner (LCR) rats display low aerobic capacity, metabolic dysfuction, and spatial memory deficits. A heat treatment (HT) can improve metabolic dysfunction in LCR peripheral organs after high fat diet (HFD). Little is known about metabolic changes in the brains of these rats following HT. OBJECTIVE: Our objective was to examine the extent to which high or low aerobic capacity impacts Akt (a protein marker of metabolism) and heat shock protein 72 (HSP72, a marker of heat shock response) after HFD and HT in hippocampus. METHODS: We measured phosphorylated Akt (pAkt) in the striatum and hippocampus, and HSP72 in the hippocampus, of HFD-fed and chow-fed LCR and high-capacity runner (HCR) rats with and without HT. RESULTS: pAkt was lower in the hippocampus of chow-fed LCR than HCR rats. HFD resulted in greater pAkt in LCR but not HCR rats, but HT resulted in lower pAkt in the LCR HFD group. HSP72 was greater in both HCR and LCR rat hippocampus after HT. The HFD blunted this effect in LCR compared to HCR hippocampus. CONCLUSION: The abnormal phosphorylation of Akt and diminished HSP response in the hippocampus of young adult LCR rats might indicate early vulnerability to metabolic challenges in this key brain region associated with learning and memory.

4.
Am J Physiol Regul Integr Comp Physiol ; 315(4): R696-R707, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29924632

ABSTRACT

Induction of the chaperone heat shock protein 72 (HSP72) through heat treatment (HT), exercise, or overexpression improves glucose tolerance and mitochondrial function in skeletal muscle. Less is known about HSP72 function in the liver where lipid accumulation can result in insulin resistance and nonalcoholic fatty liver disease (NAFLD). The purpose of this study was 1) to determine whether weekly in vivo HT induces hepatic HSP72 and improves glucose tolerance in rats fed a high-fat diet (HFD) and 2) to determine the ability of HSP72 to protect against lipid accumulation and mitochondrial dysfunction in primary hepatocytes. Male Wistar rats were fed an HFD for 15 wk and were given weekly HT (41°C, 20 min) or sham treatments (37°C, 20 min) for the final 7 wk. Glucose tolerance and insulin sensitivity were assessed, along with HSP72 induction and triglyceride storage, in the skeletal muscle and liver. The effect of an acute loss of HSP72 in primary hepatocytes was examined via siRNA. Weekly in vivo HT improved glucose tolerance, elevated muscle and hepatic HSP72 protein content, and reduced muscle triglyceride storage. In primary hepatocytes, mitochondrial morphology was changed, and fatty acid oxidation was reduced in small interfering HSP72 (siHSP72)-treated hepatocytes. Lipid accumulation following palmitate treatment was increased in siHSP72-treated hepatocytes. These data suggest that HT may improve systemic metabolism via induction of hepatic HSP72. Additionally, acute loss of HSP72 in primary hepatocytes impacts mitochondrial health as well as fat oxidation and storage. These findings suggest therapies targeting HSP72 in the liver may prevent NAFLD.


Subject(s)
HSP72 Heat-Shock Proteins/metabolism , Hepatocytes/metabolism , Hyperthermia, Induced , Liver/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Animals , Blood Glucose/metabolism , Cells, Cultured , Diet, High-Fat , Disease Models, Animal , Fatty Acids/metabolism , HSP72 Heat-Shock Proteins/genetics , Hepatocytes/ultrastructure , Insulin Resistance , Liver/ultrastructure , Male , Mice, Inbred C57BL , Mitochondria, Liver/metabolism , Mitochondria, Liver/pathology , Muscle, Skeletal/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Oxidation-Reduction , Rats, Wistar , Signal Transduction , Up-Regulation
5.
Neurosci Lett ; 674: 49-53, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29522838

ABSTRACT

Aerobic capacity is a strong predictor of mortality. Low capacity runner (LCR) rats exhibit reduced mitochondrial function in peripheral organs. A high fat diet (HFD) can worsen metabolic phenotype in LCR rats. Little is known about metabolic changes in the brains of these rats, however. This study examined protein markers of mitochondrial function and metabolism as a function of aerobic running capacity and an acute HFD in four brain regions: the striatum, hippocampus, hypothalamus, and substantia nigra. After 3 days HFD or chow diets, we measured peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1-α), nuclear respiratory factors 1 (Nrf-1), mitochondrial transcription factor A (TFAM), and phosphorylated (activated) AMP-activated protein kinase (p-AMPK) protein levels in the four brain regions. LCR rats exhibited lower levels of mitochondrial proteins (PGC1-α, Nrf-1, TFAM), and greater p-AMPK, in striatum, but not in the other brain regions. Mitochondrial protein levels were greater in HFD LCR striatum, while p-AMPK was lower in this group. Markers of lower mitochondrial biogenesis and increased metabolic demand were limited to the LCR striatum, which nevertheless maintained the capacity to respond to an acute HFD challenge.


Subject(s)
Brain/metabolism , Diet, High-Fat , Energy Metabolism , Mitochondrial Proteins/metabolism , Running , AMP-Activated Protein Kinases/metabolism , Animals , Corpus Striatum/metabolism , Hippocampus/metabolism , Hypothalamus/metabolism , Male , Rats , Substantia Nigra/metabolism
6.
Diabetes ; 65(11): 3341-3351, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27554472

ABSTRACT

Heat treatment (HT) effectively prevents insulin resistance and glucose intolerance in rats fed a high-fat diet (HFD). The positive metabolic actions of heat shock protein 72 (HSP72), which include increased oxidative capacity and enhanced mitochondrial function, underlie the protective effects of HT. The purpose of this study was to test the ability of HSP72 induction to mitigate the effects of consumption of a short-term 3-day HFD in rats selectively bred to be low-capacity runners (LCRs) and high-capacity runners (HCRs)-selective breeding that results in disparate differences in intrinsic aerobic capacity. HCR and LCR rats were fed a chow or HFD for 3 days and received a single in vivo HT (41°C, for 20 min) or sham treatment (ST). Blood, skeletal muscles, liver, and adipose tissues were harvested 24 h after HT/ST. HT decreased blood glucose levels, adipocyte size, and triglyceride accumulation in liver and muscle and restored insulin sensitivity in glycolytic muscles from LCR rats. As expected, HCR rats were protected from the HFD. Importantly, HSP72 induction was decreased in LCR rats after only 3 days of eating the HFD. Deficiency in the highly conserved stress response mediated by HSPs could underlie susceptibility to metabolic disease with low aerobic capacity.


Subject(s)
Heat-Shock Response/physiology , Metabolic Diseases/metabolism , Adipose Tissue, White/metabolism , Animals , Blood Glucose/metabolism , Blotting, Western , Body Composition/physiology , Diet, High-Fat/adverse effects , Energy Intake/physiology , Insulin Resistance , Male , Muscle, Skeletal/metabolism , Rats , Triglycerides/metabolism
7.
Neurochem Int ; 97: 172-80, 2016 07.
Article in English | MEDLINE | ID: mdl-27125544

ABSTRACT

Diet-induced obesity and associated metabolic effects can lead to neurological dysfunction and increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Despite these risks, the effects of a high-fat diet on the central nervous system are not well understood. To better understand the mechanisms underlying the effects of high fat consumption on brain regions affected by AD and PD, we used proton magnetic resonance spectroscopy ((1)H-MRS) to measure neurochemicals in the hippocampus and striatum of rats fed a high fat diet vs. normal low fat chow. We detected lower concentrations of total creatine (tCr) and a lower glutamate-to-glutamine ratio in the hippocampus of high fat rats. Additional effects observed in the hippocampus of high fat rats included higher N-acetylaspartylglutamic acid (NAAG), and lower myo-inositol (mIns) and serine (Ser) concentrations. Post-mortem tissue analyses revealed lower phosphorylated AMP-activated protein kinase (pAMPK) in the striatum but not in the hippocampus of high fat rats. Hippocampal pAMPK levels correlated significantly with tCr, aspartate (Asp), phosphoethanolamine (PE), and taurine (Tau), indicating beneficial effects of AMPK activation on brain metabolic and energetic function, membrane turnover, and edema. A negative correlation between pAMPK and glucose (Glc) indicates a detrimental effect of brain Glc on cellular energy response. Overall, these changes indicate alterations in neurotransmission and in metabolic and bioenergetic function in the hippocampus and in the striatum of rats fed a high fat diet.


Subject(s)
Corpus Striatum/metabolism , Diet, High-Fat/adverse effects , Energy Metabolism/physiology , Hippocampus/metabolism , Magnetic Resonance Spectroscopy , Animals , Brain/metabolism , Magnetic Resonance Spectroscopy/methods , Male , Metabolic Networks and Pathways/physiology , Random Allocation , Rats , Rats, Inbred F344
8.
Physiol Rep ; 3(4)2015 Apr.
Article in English | MEDLINE | ID: mdl-25896980

ABSTRACT

We investigated the role of muscle activity in maintaining normal glucose homeostasis via transection of the sciatic nerve, an extreme model of disuse atrophy. Mice were killed 3, 10, 28, or 56 days after transection or sham surgery. There was no difference in muscle weight between sham and transected limbs at 3 days post surgery, but it was significantly lower following transection at the other three time points. Transected muscle weight stabilized by 28 days post surgery with no further loss. Myocellular cross-sectional area was significantly smaller at 10, 28, and 56 days post transection surgery. Additionally, muscle fibrosis area was significantly greater at 56 days post transection. In transected muscle there was reduced expression of genes encoding transcriptional regulators of metabolism (PPARα, PGC-1α, PGC-1ß, PPARδ), a glycolytic enzyme (PFK), a fatty acid transporter (M-CPT 1), and an enzyme of mitochondrial oxidation (CS) with transection. In denervated muscle, glucose uptake was significantly lower at 3 days but was greater at 56 days under basal and insulin-stimulated conditions. Although GLUT 4 mRNA was significantly lower at all time points in transected muscle, Western blot analysis showed greater expression of GLUT4 at 28 and 56 days post surgery. GLUT1 mRNA was unchanged; however, GLUT1 protein expression was also greater in transected muscles. Surgery led to significantly higher protein expression for Akt2 as well as higher phosphorylation of Akt. While denervation may initially lead to reduced glucose sensitivity, compensatory responses of insulin signaling appeared to restore and improve glucose uptake in long-term-transected muscle.

9.
Brain Res ; 1613: 49-58, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-25862572

ABSTRACT

Diet-induced obesity can increase the risk for developing age-related neurodegenerative diseases including Parkinson's disease (PD). Increasing evidence suggests that mitochondrial and proteasomal mechanisms are involved in both insulin resistance and PD. The goal of this study was to determine whether diet intervention could influence mitochondrial or proteasomal protein expression and vulnerability to 6-Hydroxydopamine (6-OHDA)-induced nigrostriatal dopamine (DA) depletion in rats' nigrostriatal system. After a 3 month high-fat diet regimen, we switched one group of rats to a low-fat diet for 3 months (HF-LF group), while the other half continued with the high-fat diet (HF group). A chow group was included as a control. Three weeks after unilateral 6-OHDA lesions, HF rats had higher fasting insulin levels and higher Homeostasis model assessment of insulin resistance (HOMA-IR), indicating insulin resistance. HOMA-IR was significantly lower in HF-LF rats than HF rats, indicating that insulin resistance was reversed by switching to a low-fat diet. Compared to the Chow group, the HF group exhibited significantly greater DA depletion in the substantia nigra but not in the striatum. DA depletion did not differ between the HF-LF and HF group. Proteins related to mitochondrial function (such as AMPK, PGC-1α), and to proteasomal function (such as TCF11/Nrf1) were influenced by diet intervention, or by 6-OHDA lesion. Our findings suggest that switching to a low-fat diet reverses the effects of a high-fat diet on systemic insulin resistance, and mitochondrial and proteasomal function in the striatum. Conversely, they suggest that the effects of the high-fat diet on nigrostriatal vulnerability to 6-OHDA-induced DA depletion persist.


Subject(s)
Corpus Striatum/metabolism , Diet, High-Fat/adverse effects , Mitochondrial Proteins/metabolism , Parkinsonian Disorders/metabolism , Substantia Nigra/metabolism , Animals , Body Weight , Corpus Striatum/drug effects , Diet, Fat-Restricted , Dopamine/metabolism , Glucose/metabolism , Male , Motor Activity/drug effects , Oxidopamine , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/diet therapy , Rats , Rats, Inbred F344 , Substantia Nigra/drug effects
10.
J Appl Physiol (1985) ; 118(1): 98-106, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25554799

ABSTRACT

Heat treatments (HT) and the induction of heat shock proteins (HSPs) improve whole body and skeletal muscle insulin sensitivity while decreasing white adipose tissue (WAT) mass. However, HSPs in WAT have been understudied. The purpose of the present study was to examine patterns of HSP expression in WAT depots, and to examine the effects of a single in vivo HT on WAT metabolism. Male Wistar rats received HT (41°C, 20 min) or sham treatment (37°C), and 24 h later subcutaneous, epididymal, and retroperitoneal WAT depots (SCAT, eWAT, and rpWAT, respectively) were removed for ex vivo experiments and Western blotting. SCAT, eWAT, and rpWAT from a subset of rats were also cultured separately and received a single in vitro HT or sham treatment. HSP72 and HSP25 expression was greatest in more metabolically active WAT depots (i.e., eWAT and rpWAT) compared with the SCAT. Following HT, HSP72 increased in all depots with the greatest induction occurring in the SCAT. In addition, HSP25 increased in the rpWAT and eWAT, while HSP60 increased in the rpWAT only in vivo. Free fatty acid (FFA) release from WAT explants was increased following HT in the rpWAT only, and fatty acid reesterification was decreased in the rpWAT but increased in the SCAT following HT. HT increased insulin responsiveness in eWAT, but not in SCAT or rpWAT. Differences in HSP expression and induction patterns following HT further support the growing body of literature differentiating distinct WAT depots in health and disease.


Subject(s)
Adipose Tissue, White/metabolism , Heat-Shock Proteins/metabolism , Animals , HSP72 Heat-Shock Proteins/metabolism , Hot Temperature , Lipolysis/physiology , Male , Organ Specificity , Rats , Rats, Wistar
11.
Proc Natl Acad Sci U S A ; 104(16): 6626-31, 2007 Apr 17.
Article in English | MEDLINE | ID: mdl-17426142

ABSTRACT

The high-resolution crystal structure of kexin (Kex2) in complex with a peptidyl-chloromethylketone inhibitor containing a noncognate lysine at the P(1) position provides the structural basis for the differential lysine/arginine selectivity that defines the prohormone (proprotein) convertase (PC) family. By comparison with the previous structures of Kex2 and furin, this structure of the acylated enzyme provides a basis for the observed decrease in the acylation rate with substrates containing a lysine at P(1) and the absence of an effect on the deacylation rate without involving mobility of the S(1) lid. The structure of the complex shows that a secondary subsite in the S(1) pocket is present, and that this site recognizes and binds the P(1) lysine in a more shallow fashion than arginine. This results in a displacement of the bound peptide away from the S385 nucleophile relative to substrates containing a P(1) arginine. It is concluded that this alternate binding site and resultant displacement of the scissile bond in the active site results in the observed decrease in the acylation rate. Studies of the inactivation kinetics of Kex2 by two peptidyl chloromethylketone inhibitors demonstrates that the selectivity between lysine and arginine at the P(1) position arises at the acylation step, consistent with what was observed with peptidyl substrates [Rockwell NC, Fuller RS (2001) J Biol Chem 276:38394-38399].


Subject(s)
Arginine/metabolism , Lysine/metabolism , Proprotein Convertases/metabolism , Protein Precursors/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Crystallography, X-Ray , Proprotein Convertases/chemistry , Protein Binding , Protein Precursors/chemistry , Saccharomyces cerevisiae Proteins/chemistry
12.
Biochemistry ; 44(12): 4765-74, 2005 Mar 29.
Article in English | MEDLINE | ID: mdl-15779903

ABSTRACT

Phosphite dehydrogenase (PTDH) catalyzes the unusual oxidation of phosphite to phosphate with the concomitant reduction of NAD(+) to NADH. PTDH shares significant amino acid sequence similarity with D-hydroxy acid dehydrogenases (DHs), including strongly conserved catalytic residues His292, Glu266, and Arg237. Site-directed mutagenesis studies corroborate the essential role of His292 as all mutants of this residue were completely inactive. Histidine-selective inactivation studies with diethyl pyrocarbonate provide further evidence regarding the importance of His292. This residue is most likely the active site base that deprotonates the water nucleophile. Kinetic analysis of mutants in which Arg237 was changed to Leu, Lys, His, and Gln revealed that Arg237 is involved in substrate binding. These results agree with the typical role of this residue in D-hydroxy acid DHs. However, Glu266 does not play the typical role of increasing the pK(a) of His292 to enhance substrate binding and catalysis as the Glu266Gln mutant displayed an increased k(cat) and unchanged pH-rate profile compared to those of wild-type PTDH. The role of Glu266 is likely the positioning of His292 and Arg237 with which it forms hydrogen bonds in a homology model. Homology modeling suggests that Lys76 may also be involved in substrate binding, and this postulate is supported by mutagenesis studies. All mutants of Lys76 display reduced activity with large effects on the K(m) for phosphite, and Lys76Cys could be chemically rescued by alkylation with 2-bromoethylamine. Whereas a positively charged residue is absolutely essential for activity at the position of Arg237, Lys76 mutants that lacked a positively charged side chain still had activity, indicating that it is less important for binding and catalysis. These results highlight the versatility of nature's catalytic scaffolds, as a common framework with modest changes allows PTDH to catalyze its unusual nucleophilic displacement reaction and d-hydroxy acid DHs to oxidize alcohols to ketones.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutagenesis, Site-Directed , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , Amino Acid Sequence , Arginine/genetics , Bacterial Proteins/antagonists & inhibitors , Binding Sites/genetics , Cysteine/genetics , Deuterium Exchange Measurement , Diethyl Pyrocarbonate/pharmacology , Glutamic Acid/genetics , Glutamine/genetics , Histidine/genetics , Hydrogen-Ion Concentration , Kinetics , Lysine/genetics , Molecular Sequence Data , NADH, NADPH Oxidoreductases/antagonists & inhibitors , Phosphites/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...