Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 92020 12 15.
Article in English | MEDLINE | ID: mdl-33319742

ABSTRACT

The Red Sea was witness to important events during human history, including the first long steps in a trade network (the spice route) that would drive maritime technology and shape geopolitical fortunes for thousands of years. Punt was a pivotal early node in the rise of this enterprise, serving as an important emporium for luxury goods, including sacred baboons (Papio hamadryas), but its location is disputed. Here, we use geospatial variation in the oxygen and strontium isotope ratios of 155 baboons from 77 locations to estimate the geoprovenance of mummified baboons recovered from ancient Egyptian temples and tombs. Five Ptolemaic specimens of P. anubis (404-40 BC) showed evidence of long-term residency in Egypt prior to mummification, consistent with a captive breeding program. Two New Kingdom specimens of P. hamadryas were sourced to a region that encompasses much of present-day Ethiopia, Eritrea, and Djibouti, and portions of Somalia and Yemen. This result is a testament to the tremendous reach of Egyptian seafaring during the 2nd millennium BC. It also corroborates the balance of scholarly conjecture on the location of Punt.


Strontium is a chemical element that can act as a geographic fingerprint: its composition differs between locations, and as it enters the food chain, it can help to retrace the life history of extant or past animals. In particular, strontium in teeth ­ which stop to develop early ­ can reveal where an individual was born; strontium in bone and hair, on the other hand, can show where it lived just before death. Together, these analyses may hold the key to archaeological mysteries, such as the location of a long-lost kingdom revered by ancient Egyptians. For hundreds of years, the Land of Punt was one of Egypt's strongest trading partners, and a place from which to import premium incense and prized monkeys. Travellers could reach Punt by venturing south and east of Egypt, suggesting that the kingdom occupied the southern Red Sea region. Yet its exact location is still highly debated. To investigate, Dominy et al. examined the mummies of baboons present in ancient Egyptian tombs, and compared the strontium compositions of the bones, hair and teeth of these remains with the ones found in baboons living in various regions across Africa. This shed a light on the origins of the ancient baboons: while some were probably raised in captivity in Egypt, others were born in modern Ethiopia, Eritrea, Djibouti, Somalia and Yemen ­ areas already highlighted as potential locations for the Land of Punt. The work by Dominy et al. helps to better understand the ancient trade routes that shaped geopolitical fortunes for millennia. It also highlights the need for further archaeological research in Eritrea and Somalia, two areas which are currently understudied.


Subject(s)
Commerce/history , Mummies/history , Papio hamadryas , Ships/history , Travel/history , Animals , Egypt , History, Ancient , Oxygen Isotopes/analysis , Strontium Isotopes/analysis
2.
Am J Phys Anthropol ; 154(4): 633-43, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24839035

ABSTRACT

Calcium stable isotope ratios are hypothesized to vary as a function of trophic level. This premise raises the possibility of using calcium stable isotope ratios to study the dietary behaviors of fossil taxa and to test competing hypotheses on the adaptive origins of euprimates. To explore this concept, we measured the stable isotope composition of contemporary mammals in northern Borneo and northwestern Costa Rica, two communities with functional or phylogenetic relevance to primate origins. We found that bone collagen δ(13) C and δ(15) N values could differentiate trophic levels in each assemblage, a result that justifies the use of these systems to test the predicted inverse relationship between bioapatite δ(13) C and δ(44) Ca values. As expected, taxonomic carnivores (felids) showed a combination of high δ(13) C and low δ(44) Ca values; however, the δ(44) Ca values of other faunivores were indistinguishable from those of primary consumers. We suggest that the trophic insensitivity of most bioapatite δ(44) Ca values is attributable to the negligible calcium content of arthropod prey. Although the present results are inconclusive, the tandem analysis of δ(44) Ca and δ(13) C values in fossils continues to hold promise for informing paleodietary studies and we highlight this potential by drawing attention to the stable isotope composition of the Early Eocene primate Cantius.


Subject(s)
Calcium/analysis , Carbon Isotopes/analysis , Diet , Fossils , Animals , Apatites/analysis , Apatites/chemistry , Borneo , Collagen/analysis , Collagen/chemistry , Costa Rica , Paleontology , Primates/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...