Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 21: 2323-2329, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30555870

ABSTRACT

The data presented here are related to our research article entitled "miR-132/212 is induced by stress and its dysregulation triggers anxiety-related behavior" (Aten et al., 2018). In this article, we utilize immunofluorescent techniques to examine the protein-level expression of two microRNA-132/212 target genes, Sirt1 and Pten, in miR-132 transgenic and miR-132/212 conditional knockout (cKO) mouse lines. Additionally, using immunohistochemistry, we detail the expression profile of Sirt1 and Pten in the hippocampus and amygdala of WT mice after a 15 day chronic restraint stress paradigm.

2.
J Biol Rhythms ; 33(5): 497-514, 2018 10.
Article in English | MEDLINE | ID: mdl-30175684

ABSTRACT

Within the suprachiasmatic nucleus (SCN)-the locus of the master circadian clock- transcriptional regulation via the CREB/CRE pathway is implicated in the functioning of the molecular clock timing process, and is a key conduit through which photic input entrains the oscillator. One event driving CRE-mediated transcription is the phosphorylation of CREB at serine 133 (Ser133). Indeed, numerous reporter gene assays have shown that an alanine point mutation in Ser133 reduces CREB-mediated transcription. Here, we sought to examine the contribution of Ser133 phosphorylation to the functional role of CREB in SCN clock physiology in vivo. To this end, we used a CREB knock-in mouse strain, in which Ser133 was mutated to alanine (S/A CREB). Under a standard 12 h light-dark cycle, S/A CREB mice exhibited a marked alteration in clock-regulated wheel running activity. Relative to WT mice, S/A CREB mice had highly fragmented bouts of locomotor activity during the night phase, elevated daytime activity, and a delayed phase angle of entrainment. Further, under free-running conditions, S/A CREB mice had a significantly longer tau than WT mice and reduced activity amplitude. In S/A CREB mice, light-evoked clock entrainment, using both Aschoff type 1 and 6 h "jet lag" paradigms, was markedly reduced relative to WT mice. S/A CREB mice exhibited attenuated transcriptional drive, as assessed by examining both clock-gated and light-evoked gene expression. Finally, SCN slice culture imaging detected a marked disruption in cellular clock phase synchrony following a phase-resetting stimulus in S/A CREB mice. Together, these data indicate that signaling through CREB phosphorylation at Ser133 is critical for the functional fidelity of both SCN timing and entrainment.


Subject(s)
Circadian Clocks , Cyclic AMP Response Element-Binding Protein/metabolism , Serine/metabolism , Suprachiasmatic Nucleus/physiology , Alanine/genetics , Animals , Circadian Rhythm , Cyclic AMP Response Element-Binding Protein/genetics , Gene Knock-In Techniques , Mice , Motor Activity , Period Circadian Proteins/genetics , Phosphorylation , Serine/genetics , tau Proteins/metabolism
3.
Neuroscience ; 331: 1-12, 2016 09 07.
Article in English | MEDLINE | ID: mdl-27298008

ABSTRACT

Nuclear distribution element-like 1 (NDEL1/NUDEL) is a mammalian homolog of the Aspergillus nidulans nuclear distribution molecule NudE. NDEL1 plays a critical role in neuronal migration, neurite outgrowth and neuronal positioning during brain development; however within the adult central nervous system, limited information is available regarding NDEL1 expression and functions. Here, the goal was to examine inducible NDEL1 expression in the adult mouse forebrain. Immunolabeling revealed NDEL1 within the forebrain, including the cortex and hippocampus, as well as the midbrain and hypothalamus. Expression was principally localized to perikarya. Using a combination of immunolabeling and RNA seq profiling, we detected a marked and long-lasting upregulation of NDEL1 expression within the hippocampus following a pilocarpine-evoked repetitive seizure paradigm. Chromatin immunoprecipitation (ChIP) analysis identified a cAMP response element-binding protein (CREB) binding site within the CpG island proximal to the NDEL1 gene, and in vivo transgenic repression of CREB led to a marked downregulation of seizure-evoked NDEL1 expression. Together these data indicate that NDEL1 is inducibly expressed in the adult nervous system, and that signaling via the CREB/CRE transcriptional pathway is likely involved. The role of NDEL1 in neuronal migration and neurite outgrowth during development raises the interesting prospect that inducible NDEL1 in the mature nervous system could contribute to the well-characterized structural and functional plasticity resulting from repetitive seizure activity.


Subject(s)
Carrier Proteins/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Prosencephalon/metabolism , Status Epilepticus/metabolism , Animals , Carrier Proteins/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Disease Models, Animal , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Mice, Inbred C57BL , Mice, Transgenic , Neuroglia/metabolism , Neuroglia/pathology , Neurons/metabolism , Neurons/pathology , Pilocarpine , Prosencephalon/pathology , Status Epilepticus/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...