Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 298, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36653403

ABSTRACT

For successful regeneration, the identity of the missing tissue must be specified according to the pre-existing tissue. Planarians are ideal for the study of the mechanisms underlying this process; the same field of cells can regrow a head or a tail according to the missing body part. After amputation, the differential activation of the Wnt/ß-catenin signal specifies anterior versus posterior identity. Initially, both wnt1 and notum (Wnt inhibitor) are expressed in all wounds, but 48 hours later they are restricted to posterior or anterior facing wounds, respectively, by an unknown mechanism. Here we show that 12 hours after amputation, the chromatin accessibility of cells in the wound region changes according to the polarity of the pre-existing tissue in a Wnt/ß-catenin-dependent manner. Genomic analyses suggest that homeobox transcription factors and chromatin-remodeling proteins are direct Wnt/ß-catenin targets, which trigger the expression of posterior effectors. Finally, we identify FoxG as a wnt1 up-stream regulator, probably via binding to its first intron enhancer region.


Subject(s)
Planarians , Animals , Planarians/physiology , Wnt Proteins/genetics , Wnt Proteins/metabolism , Chromatin Assembly and Disassembly , beta Catenin/genetics , beta Catenin/metabolism , Body Patterning/genetics
2.
Methods Mol Biol ; 2630: 145-154, 2023.
Article in English | MEDLINE | ID: mdl-36689182

ABSTRACT

Whole-mount in situ hybridization (WISH) is a technique that enables temporal and spatial visualization of RNA molecules in an embryo or whole tissue by using a complementary labelled probe. MicroRNAs are short noncoding RNAs of 20-25 nt in length mainly involved in posttranscriptional regulation of gene expression. In this chapter, we describe how to visualize miRNAs in Xenopus laevis or tropicalis by WISH using two different approaches: LNA-WISH to visualize mature miRNAs and pri-miRNA-WISH to visualize the immature form of miRNAs, the pri-miRNAs.


Subject(s)
MicroRNAs , RNA, Small Untranslated , Animals , MicroRNAs/genetics , Xenopus laevis/metabolism , Gene Expression Regulation
3.
Methods Mol Biol ; 2630: 231-241, 2023.
Article in English | MEDLINE | ID: mdl-36689186

ABSTRACT

In recent years CRISPR-Cas9 knockouts (KO) have become increasingly utilized to study gene function. MicroRNAs (miRNAs) are short noncoding RNAs, 20-25 nucleotides long, which affect gene expression through posttranscriptional repression. As miRNAs are so small and due to the limitations of known PAM sequences, it is difficult to design CRISPR sgRNAs that reproducibly lead to a KO. We have therefore developed a novel approach using two guide RNAs to effectively "drop out" a miRNA. Validation of efficient CRISPR miRNA KO and phenotype analysis included use of q-RT-PCR and Sanger sequencing. To show specificity of the phenotype, we provide a protocol to use miRNA mimics to rescue the KO phenotype.


Subject(s)
Gene Editing , MicroRNAs , Animals , CRISPR-Cas Systems , MicroRNAs/genetics , Xenopus/genetics , RNA, Guide, CRISPR-Cas Systems
4.
Biochem Soc Trans ; 50(2): 965-974, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35383827

ABSTRACT

The neural crest (NC) is a vertebrate-specific migratory population of multipotent stem cells that originate during late gastrulation in the region between the neural and non-neural ectoderm. This population of cells give rise to a range of derivatives, such as melanocytes, neurons, chondrocytes, chromaffin cells, and osteoblasts. Because of this, failure of NC development can cause a variety of pathologies, often syndromic, that are globally called neurocristopathies. Many genes are known to be involved in NC development, but not all of them have been identified. In recent years, attention has moved from protein-coding genes to non-coding genes, such as microRNAs (miRNA). There is increasing evidence that these non-coding RNAs are playing roles during embryogenesis by regulating the expression of protein-coding genes. In this review, we give an introduction to miRNAs in general and then focus on some miRNAs that may be involved in NC development and neurocristopathies. This new direction of research will give geneticists, clinicians, and molecular biologists more tools to help patients affected by neurocristopathies, as well as broadening our understanding of NC biology.


Subject(s)
MicroRNAs , Neural Crest , Cell Differentiation/genetics , Embryonic Development , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neural Crest/metabolism , Neural Crest/pathology , Neurogenesis , Osteoblasts
5.
Dev Biol ; 483: 66-75, 2022 03.
Article in English | MEDLINE | ID: mdl-34968443

ABSTRACT

In recent years CRISPR-Cas9 knockouts (KO) have become increasingly ultilised to study gene function. MicroRNAs (miRNAs) are short non-coding RNAs, 20-22 nucleotides long, which affect gene expression through post-transcriptional repression. We previously identified miRNAs-196a and -219 as implicated in the development of Xenopus neural crest (NC). The NC is a multipotent stem-cell population, specified during early neurulation. Following EMT, NC cells migrate to various points in the developing embryo where they give rise to a number of tissues including parts of the peripheral nervous system, pigment cells and craniofacial skeleton. Dysregulation of NC development results in many diseases grouped under the term neurocristopathies. As miRNAs are so small, it is difficult to design CRISPR sgRNAs that reproducibly lead to a KO. We have therefore designed a novel approach using two guide RNAs to effectively 'drop out' a miRNA. We have knocked out miR-196a and miR-219 and compared the results to morpholino knockdowns (KD) of the same miRNAs. Validation of efficient CRISPR miRNA KO and phenotype analysis included use of whole-mount in situ hybridization of key NC and neural plate border markers such as Pax3, Xhe2, Sox10 and Snail2, q-RT-PCR and Sanger sequencing. To show specificity we have also rescued the knockout phenotype using miRNA mimics. MiRNA-219 and miR-196a KO's both show loss of NC, altered neural plate and hatching gland phenotypes. Tadpoles show gross craniofacial and pigment phenotypes.


Subject(s)
CRISPR-Cas Systems , Gene Knockout Techniques/methods , MicroRNAs/genetics , Xenopus laevis/embryology , Xenopus laevis/genetics , Animals , Gene Expression Regulation, Developmental , Gene Knockdown Techniques/methods , In Situ Hybridization/methods , Morpholinos/genetics , Neural Crest/embryology , Neural Crest/metabolism , Neural Plate/embryology , Neural Plate/metabolism , Neurulation/genetics , Phenotype , RNA, Guide, Kinetoplastida/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome/genetics , Xenopus Proteins/genetics , Xenopus Proteins/metabolism
6.
Nat Commun ; 12(1): 1157, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33608545

ABSTRACT

Somites arising from paraxial mesoderm are a hallmark of the segmented vertebrate body plan. They form sequentially during axis extension and generate musculoskeletal cell lineages. How paraxial mesoderm becomes regionalised along the axis and how this correlates with dynamic changes of chromatin accessibility and the transcriptome remains unknown. Here, we report a spatiotemporal series of ATAC-seq and RNA-seq along the chick embryonic axis. Footprint analysis shows differential coverage of binding sites for several key transcription factors, including CDX2, LEF1 and members of HOX clusters. Associating accessible chromatin with nearby expressed genes identifies cis-regulatory elements (CRE) for TCF15 and MEOX1. We determine their spatiotemporal activity and evolutionary conservation in Xenopus and human. Epigenome silencing of endogenous CREs disrupts TCF15 and MEOX1 gene expression and recapitulates phenotypic abnormalities of anterior-posterior axis extension. Our integrated approach allows dissection of paraxial mesoderm regulatory circuits in vivo and has implications for investigating gene regulatory networks.


Subject(s)
Chick Embryo/physiology , Chromatin , Gene Expression Regulation, Developmental , Mesoderm/physiology , Regulatory Sequences, Nucleic Acid/physiology , Transcriptome , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , CDX2 Transcription Factor/genetics , CDX2 Transcription Factor/metabolism , Cell Lineage , Female , Gastrulation/genetics , Gastrulation/physiology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism , Somites/metabolism , Transcription Factors/metabolism , Xenopus laevis
7.
Gene Expr Patterns ; 39: 119167, 2021 03.
Article in English | MEDLINE | ID: mdl-33460819

ABSTRACT

Frizzleds (Fzds) are transmembrane receptors that can transduce signals dependent upon binding of Wnts, a large family of secreted glycoproteins homologous to the Drosophila wingless gene. FZDs are critical for a wide variety of normal and pathological developmental processes. In the nervous system, Wnts and Frizzleds play an important role in anterior-posterior patterning, cell fate decisions, proliferation, and synaptogenesis. Here, we preformed a comprehensive expression profile of Wnt receptors (FZD) by using situ hybridization to identify FZDs that are expressed in dorsal-ventral regions of the neural tube development. Our data show specific expression for FZD1,2,3,7,9 and 10 in the chick developing spinal cord. This expression profile of cFZD receptors offers the basis for functional studies in the future to determine roles for the different FZD receptors and their interactions with Wnts during dorsal-ventral neural tube development in vivo. Furthermore, we also show that co-overexpression of Wnt1/3a by in vivo electroporation affects FZD7/10 expression in the neural tube. This illustrates an example of Wnts-FZDs interactions during spinal cord neurogenesis.


Subject(s)
Avian Proteins/genetics , Frizzled Receptors/genetics , Spinal Cord/metabolism , Animals , Avian Proteins/metabolism , Chick Embryo , Frizzled Receptors/metabolism , Gene Expression Regulation, Developmental , Spinal Cord/embryology , Wnt Proteins/genetics , Wnt Proteins/metabolism
8.
PLoS One ; 15(6): e0219721, 2020.
Article in English | MEDLINE | ID: mdl-32531778

ABSTRACT

Wnt/FZD signalling activity is required for spinal cord development, including the dorsal-ventral patterning of the neural tube, where it affects proliferation and specification of neurons. Wnt ligands initiate canonical, ß -catenin-dependent, signaling by binding to Frizzled receptors. However, in many developmental contexts the cognate FZD receptor for a particular Wnt ligand remains to be identified. Here, we characterized FZD10 expression in the dorsal neural tube where it overlaps with both Wnt1 and Wnt3a, as well as markers of dorsal progenitors and interneurons. We show FZD10 expression is sensitive to Wnt1, but not Wnt3a expression, and FZD10 plays a role in neural tube patterning. Knockdown approaches show that Wnt1 induced ventral expansion of dorsal neural markes, Pax6 and Pax7, requires FZD10. In contrast, Wnt3a induced dorsalization of the neural tube is not affected by FZD10 knockdown. Gain of function experiments show that FZD10 is not sufficient on its own to mediate Wnt1 activity in vivo. Indeed excess FZD10 inhibits the dorsalizing activity of Wnt1. However, addition of the Lrp6 co-receptor dramatically enhances the Wnt1/FZD10 mediated activation of dorsal markers. This suggests that the mechanism by which Wnt1 regulates proliferation and patterning in the neural tube requires both FZD10 and Lrp6.


Subject(s)
Avian Proteins/metabolism , Frizzled Receptors/metabolism , Neurogenesis , Spinal Cord/cytology , Spinal Cord/growth & development , Wnt1 Protein/metabolism , Animals , Avian Proteins/deficiency , Avian Proteins/genetics , Cell Proliferation , Chickens , Frizzled Receptors/deficiency , Frizzled Receptors/genetics , Gene Knockdown Techniques , Neural Tube/metabolism , Signal Transduction
9.
Cold Spring Harb Protoc ; 2020(11)2020 11 02.
Article in English | MEDLINE | ID: mdl-32404313

ABSTRACT

Failure to predict drug-induced toxicity reactions is a major problem contributing to a high attrition rate and tremendous cost in drug development. Drug screening in X. laevis embryos is high-throughput relative to screening in rodents, potentially making them ideal for this use. Xenopus embryos have been used as a toxicity model in the frog embryo teratogenesis assay on Xenopus (FETAX) for the early stages of drug safety evaluation. We previously developed compound-screening methods using Xenopus embryos and believe they could be used for in vitro drug-induced toxicity safety assessment before expensive preclinical trials in mammals. Specifically, Xenopus embryos could help predict drug-induced hepatotoxicity and consequently aid lead candidate prioritization. Here we present methods, which we have modified for use on Xenopus embryos, to help measure the potential for a drug to induce liver toxicity. One such method examines the release of the liver-specific microRNA (miRNA) miR-122 from the liver into the vasculature as a result of hepatocellular damage, which could be due to drug-induced acute liver injury. Paracetamol, a known hepatotoxin at high doses, can be used as a positive control. We previously showed that some of the phenotypes of mammalian paracetamol overdose are reflected in Xenopus embryos. Consequently, we have also included here a method that measures the concentration of free glutathione (GSH), which is an indicator of paracetamol-induced liver injury. These methods can be used as part of a panel of protocols to help predict the hepatoxicity of a drug at an early stage in drug development.


Subject(s)
Abnormalities, Drug-Induced/diagnosis , Biological Assay/methods , Chemical and Drug Induced Liver Injury/diagnosis , Embryo, Nonmammalian/drug effects , Xenopus laevis/embryology , Abnormalities, Drug-Induced/genetics , Abnormalities, Drug-Induced/metabolism , Animals , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Drug Evaluation, Preclinical/methods , Embryo, Nonmammalian/metabolism , Liver/drug effects , Liver/embryology , Liver/metabolism , MicroRNAs/genetics , Reproducibility of Results , Sensitivity and Specificity , Toxicity Tests/methods , Xenopus laevis/genetics , Xenopus laevis/metabolism
10.
Biology (Basel) ; 8(3)2019 Aug 24.
Article in English | MEDLINE | ID: mdl-31450588

ABSTRACT

Homologous long non-coding RNAs (lncRNAs) are elusive to identify by sequence similarity due to their fast-evolutionary rate. Here we develop LincOFinder, a pipeline that finds conserved intergenic lncRNAs (lincRNAs) between distant related species by means of microsynteny analyses. Using this tool, we have identified 16 bona fide homologous lincRNAs between the amphioxus and human genomes. We characterized and compared in amphioxus and Xenopus the expression domain of one of them, Hotairm1, located in the anterior part of the Hox cluster. In addition, we analyzed the function of this lincRNA in Xenopus, showing that its disruption produces a severe headless phenotype, most probably by interfering with the regulation of the Hox cluster. Our results strongly suggest that this lincRNA has probably been regulating the Hox cluster since the early origin of chordates. Our work pioneers the use of syntenic searches to identify non-coding genes over long evolutionary distances and helps to further understand lncRNA evolution.

11.
Eur J Pharm Biopharm ; 134: 166-177, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30468838

ABSTRACT

Novel alternatives to antibiotics are urgently needed for the successful treatment of antimicrobial resistant (AMR) infections. Experimental antibacterial oligonucleotide therapeutics, such as transcription factor decoys (TFD), are a promising approach to circumvent AMR. However, the therapeutic potential of TFD is contingent upon the development of carriers that afford efficient DNA protection against nucleases and delivery of DNA to the target infection site. As a carrier for TFD, here we present three prototypes of anionic solid lipid nanoparticles that were coated with either the cationic bolaamphiphile 12-bis-tetrahydroacridinium or with protamine. Both compounds switched particles zeta potential to positive values, showing efficient complexation with TFD and demonstrable protection from deoxyribonuclease. The effective delivery of TFD into bacteria was confirmed by confocal microscopy while SLN-bacteria interactions were studied by flow cytometry. Antibacterial efficacy was confirmed using a model TFD targeting the Fur iron uptake pathway in E. coli under microaerobic conditions. Biocompatibility of TFD-SLN was assessed using in vitro epithelial cell and in vivo Xenopus laevis embryo models. Taken together these results indicate that TFD-SLN complex can offer preferential accumulation of TFD in bacteria and represent a promising class of carriers for this experimental approach to tackling the worldwide AMR crisis.


Subject(s)
Anti-Infective Agents/administration & dosage , Drug Carriers/chemistry , Drug Compounding/methods , Oligonucleotides/administration & dosage , Animals , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Line, Tumor , Clostridioides difficile/drug effects , Clostridioides difficile/metabolism , Drug Resistance, Bacterial/drug effects , Embryo, Nonmammalian , Escherichia coli/drug effects , Escherichia coli/metabolism , Furans/chemistry , Gene Expression Regulation, Bacterial/drug effects , Iron/metabolism , Lipids/chemistry , Microbial Sensitivity Tests , Nanoparticles/chemistry , Oligonucleotides/genetics , Protamines/chemistry , Pyridones/chemistry , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/genetics , Repressor Proteins/metabolism , Sigma Factor/antagonists & inhibitors , Sigma Factor/genetics , Sigma Factor/metabolism , Toxicity Tests/methods , Xenopus laevis
12.
Toxicol Lett ; 302: 83-91, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30282005

ABSTRACT

INTRODUCTION: Failure to predict drug-induced liver injury (DILI) remains a major contributing factor to lead compound drop-out during drug development. Xenopus embryos are amenable for early stage medium throughput small molecule screens and so have the potential to be used in pre-clinical screens. To begin to assess the usefulness and limitations of Xenopus embryos for safety assessment in the early phases of drug development, paracetamol was used as a model hepatotoxin. Paracetamol overdose is associated with acute liver injury. In mammals, the main mechanism of paracetamol-induced acute liver injury is an increased amount of the reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI) combined with a reduction of free glutathione (GSH). Humans that have taken an overdose of paracetamol are often treated with N-acetyl cysteine (NAC). METHOD: Xenopus laevis embryos were treated with up to 5 mM paracetamol from stage 38 to stage 45 during development, when the liver is functional. The presence of paracetamol-induced liver injury was assessed by: (1) microRNA-122 (miR-122) expression (a hepatic marker), (2) free GSH concentration (a marker of oxidative stress) and (3) NAC antioxidant intervention. RESULTS: The amount of free GSH decreased significantly in embryos exposed to increasing paracetamol concentration. In embryos exposed to 5 mM paracetamol, 22.57 ± 4.25 nmol/mg GSH was detected compared to 47.11 ± 7.31 nmol/mg untreated embryos (mean ± SEM). In tail tissue, miRNA-122 expression increased 6.3-fold with 3 mM paracetamol concentration treatment compared to untreated embryos. NAC treatment altered the free GSH decline for embryos treated with up to 5 mM. Embryos exposed to 1 mM paracetamol and then exposed to 0.5 mM NAC 24 h prior to harvest, had a significantly higher amount of GSH compared to embryos that were only exposed to 1 mM paracetamol (mean ± SEM; 97.1 ± 9.6 nmol/mg and 54.5 ± 6.6 nmol/mg respectively). CONCLUSION: Xenopus laevis embryos exhibit similar characteristics of paracetamol-induced liver injury observed in mammalian models. These data indicate that the Xenopus embryo could be a useful in vivo model to assess DILI and aid lead compound prioritisation during the early phase of drug development, in combination with pre-clinical in vitro studies. Consequently, the Xenopus embryo could contribute to the reduction principle as defined by the National Centre for the Replacement, Refinement and Reduction of Animals in Research.


Subject(s)
Acetaminophen/toxicity , Analgesics, Non-Narcotic/toxicity , Chemical and Drug Induced Liver Injury/etiology , Embryo, Nonmammalian/drug effects , Liver/drug effects , Xenopus laevis/embryology , Animals , Antioxidants/pharmacology , Biomarkers/metabolism , Chemical and Drug Induced Liver Injury/embryology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Dose-Response Relationship, Drug , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/pathology , Glutathione/metabolism , Liver/embryology , Liver/metabolism , Liver/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Oxidative Stress/drug effects
13.
14.
Gene Expr Patterns ; 29: 72-81, 2018 09.
Article in English | MEDLINE | ID: mdl-29935379

ABSTRACT

Extracellular matrix (ECM) remodeling by metalloproteinases is crucial during development. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin type I motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling. The human family includes 19 members. In this study we identified the 19 members of the ADAMTS family in Xenopus laevis and Xenopus tropicalis. Gene identification and a phylogenetic study revealed strong conservation of the ADAMTS family and contributed to a better annotation of the Xenopus genomes. Expression of the entire ADAMTS family was studied from early stages to tadpole stages of Xenopus, and detailed analysis of ADAMTS9 revealed expression in many structures during organogenesis such as neural crest (NC) derivative tissues, the pronephros and the pancreas. Versican, a matrix component substrate of ADAMTS9 shows a similar expression pattern suggesting a role of ADAMTS9 in the remodeling of the ECM in these structures by degradation of versican.


Subject(s)
ADAMTS9 Protein/metabolism , Extracellular Matrix/metabolism , Gene Expression Regulation, Developmental , Xenopus Proteins/metabolism , Xenopus laevis/growth & development , Xenopus laevis/metabolism , ADAMTS9 Protein/genetics , Animals , Genome , Morphogenesis , Phylogeny , Xenopus Proteins/genetics , Xenopus laevis/classification , Xenopus laevis/genetics
15.
Development ; 145(12)2018 06 11.
Article in English | MEDLINE | ID: mdl-29802149

ABSTRACT

Skeletal myogenesis serves as a paradigm to investigate the molecular mechanisms underlying exquisitely regulated cell fate decisions in developing embryos. The evolutionarily conserved miR-133 family of microRNAs is expressed in the myogenic lineage, but how it acts remains incompletely understood. Here, we performed genome-wide differential transcriptomics of miR-133 knockdown (KD) embryonic somites, the source of vertebrate skeletal muscle. These analyses, performed in chick embryos, revealed extensive downregulation of Sonic hedgehog (Shh) pathway components: patched receptors, Hedgehog interacting protein and the transcriptional activator Gli1. By contrast, Gli3, a transcriptional repressor, was de-repressed and confirmed as a direct miR-133 target. Phenotypically, miR-133 KD impaired myotome formation and growth by disrupting proliferation, extracellular matrix deposition and epithelialization. Together, these observations suggest that miR-133-mediated Gli3 silencing is crucial for embryonic myogenesis. Consistent with this idea, we found that activation of Shh signalling by either purmorphamine, or KD of Gli3 by antisense morpholino, rescued the miR-133 KD phenotype. Thus, we identify a novel Shh/myogenic regulatory factor/miR-133/Gli3 axis that connects epithelial morphogenesis with myogenic fate specification.


Subject(s)
Carrier Proteins/biosynthesis , Hedgehog Proteins/metabolism , Membrane Glycoproteins/biosynthesis , MicroRNAs/genetics , Muscle Development/physiology , Muscle, Skeletal/embryology , Nerve Tissue Proteins/biosynthesis , Patched Receptors/biosynthesis , Zinc Finger Protein Gli3/biosynthesis , Animals , Cell Differentiation/genetics , Cell Proliferation/genetics , Chick Embryo , Down-Regulation , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Muscle Development/genetics , Muscle, Skeletal/growth & development , Primary Cell Culture , Zinc Finger Protein GLI1/biosynthesis
16.
Oncotarget ; 9(3): 3815-3829, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29423085

ABSTRACT

Cutaneous melanoma, which develops from the pigment producing cells called melanocytes, is the most deadly form of skin cancer. Unlike the majority of other cancers, the incidence rates of melanoma are still on the rise and the treatment options currently available are being hindered by resistance, limited response rates and adverse toxicity. We have previously shown that an FDA approved drug leflunomide, used for rheumatoid arthritis (RA), also holds potential therapeutic value in treating melanoma especially if used in combination with the mutant BRAF inhibitor, vemurafenib. We have further characterized the function of leflunomide and show that the drug reduces the number of viable cells in both wild-type and BRAFV600E mutant melanoma cell lines. Further experiments have revealed leflunomide reduces cell proliferation and causes cells to arrest in G1 of the cell cycle. Cell death assays show leflunomide causes apoptosis at treatment concentrations of 25 and 50 µM. To determine if leflunomide could be used combinatorialy with other anti-melanoma drugs, it was tested in combination with the MEK inhibitor, selumetinib. This combination showed a synergistic effect in the cell lines tested. This drug combination led to an enhanced decrease in tumor size when tested in vivo compared to either drug alone, demonstrating its potential as a novel combinatorial therapy for melanoma.

17.
BMC Genomics ; 19(1): 59, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29347911

ABSTRACT

BACKGROUND: The neural crest (NC) is a class of transitory stem cell-like cells unique to vertebrate embryos. NC cells arise within the dorsal neural tube where they undergo an epithelial to mesenchymal transition in order to migrate and differentiate throughout the developing embryo. The derivative cell types give rise to multiple tissues, including the craniofacial skeleton, peripheral nervous system and skin pigment cells. Several well-studied gene regulatory networks underpin NC development, which when disrupted can lead to various neurocristopathies such as craniofrontonasal dysplasia, DiGeorge syndrome and some forms of cancer. Small RNAs, such as microRNAs (miRNAs) are non-coding RNA molecules important in post-transcriptional gene silencing and critical for cellular regulation of gene expression. RESULTS: To uncover novel small RNAs in NC development we used high definition adapters and next generation sequencing of libraries derived from ectodermal explants of Xenopus laevis embryos induced to form neural and NC tissue. Ectodermal and blastula animal pole (blastula) stage tissues were also sequenced. We show that miR-427 is highly abundant in all four tissue types though in an isoform specific manner and we define a set of 11 miRNAs that are enriched in the NC. In addition, we show miR-301a and miR-338 are highly expressed in both the NC and blastula suggesting a role for these miRNAs in maintaining the stem cell-like phenotype of NC cells. CONCLUSION: We have characterised the miRNAs expressed in Xenopus embryonic explants treated to form ectoderm, neural or NC tissue. This has identified novel tissue specific miRNAs and highlighted differential expression of miR-427 isoforms.


Subject(s)
Embryo, Nonmammalian/cytology , Gene Expression Regulation, Developmental , MicroRNAs/genetics , Neural Crest/growth & development , Xenopus laevis/embryology , Animals , Base Sequence , Blastula/cytology , Blastula/metabolism , Cells, Cultured , Embryo, Nonmammalian/metabolism , Gene Regulatory Networks , Neural Crest/metabolism , Neurogenesis , Organ Specificity , Sequence Homology , Stem Cells/cytology , Stem Cells/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus laevis/genetics
18.
Biol Open ; 6(12): 1861-1868, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29101100

ABSTRACT

Wnt signalling regulates cardiogenesis during specification of heart tissue and the morphogenetic movements necessary to form the linear heart. Wnt11-mediated non-canonical signalling promotes early cardiac development whilst Wnt11-R, which is expressed later, also signals through the non-canonical pathway to promote heart development. It is unclear which Frizzled proteins mediate these interactions. Frizzled-7 (fzd7) is expressed during gastrulation in the mesodermal cells fated to become heart, and then in the primary heart field. This expression is complementary to the expression of wnt11 and wnt11-R We further show co-localisation of fzd7 with other early- and late-heart-specific markers using double in situ hybridisation. We have used loss of function analysis to determine the role of fzd7 during heart development. Morpholino antisense oligonucleotide-mediated knockdown of Fzd7 results in effects on heart development, similar to that caused by Wnt11 loss of function. Surprisingly, overexpression of dominant-negative Fzd7 cysteine rich domain (Fzd7 CRD) results in a cardia bifida phenotype, similar to the loss of wnt11-R phenotype. Overexpression of Fzd7 and activation of non-canonical wnt signalling can rescue the effect of Fzd7 CRD. We propose that Fzd7 has an important role during Xenopus heart development.

19.
Curr Protoc Toxicol ; 73: 20.13.1-20.13.33, 2017 Aug 04.
Article in English | MEDLINE | ID: mdl-28777439

ABSTRACT

The African clawed frog, Xenopus laevis, has been used as an efficient pre-clinical screening tool to predict drug safety during the early stages of the drug discovery process. X. laevis is a relatively inexpensive model that can be used in whole organism high-throughput assays whilst maintaining a high degree of homology to the higher vertebrate models often used in scientific research. Despite an ever-increasing volume of biomedical nanoparticles (NPs) in development, their unique physico-chemical properties challenge the use of standard toxicology assays. Here, we present a protocol that directly compares the sensitivity of X. laevis development as a tool to assess potential NP toxicity by observation of embryo phenotypic abnormalities/lethality after NP exposure, to in vitro cytotoxicity obtained using mammalian cell lines. In combination with conventional cytotoxicity assays, the X. laevis phenotypic assay provides accurate data to efficiently assess the safety of novel biomedical NPs. © 2017 by John Wiley & Sons, Inc.


Subject(s)
Biological Assay , Embryo, Nonmammalian/abnormalities , Nanostructures/toxicity , Toxicity Tests , Animals , Blotting, Western , Cell Line , High-Throughput Screening Assays , Microscopy, Electron, Transmission , Models, Animal , Phenotype , Xenopus laevis
20.
PLoS One ; 12(7): e0180465, 2017.
Article in English | MEDLINE | ID: mdl-28692664

ABSTRACT

NCKX5 is an ion exchanger expressed mostly in pigment cells; however, the functional role for this protein in melanogenesis is not clear. A variant allele of SLC24A5, the gene encoding NCKX5, has been shown to correlate with lighter skin pigmentation in humans, indicating a key role for SLC24A5 in determining human skin colour. SLC24A5 expression has been found to be elevated in melanoma. Knockdown analyses have shown SLC24A5 to be important for pigmentation, but to date the function of this ion exchanger in melanogenesis has not been fully established. Our data suggest NCKX5 may have an alternative activity that is key to its role in the regulation of pigmentation. Here Xenopus laevis is employed as an in vivo model system to further investigate the function of NCKX5 in pigmentation. SLC24A5 is expressed in the melanophores as they differentiate from the neural crest and develop in the RPE of the eye. Morpholino knockdown and rescue experiments were designed to elucidate key residues and regions of the NCKX5 protein. Unilateral morpholino injection at the 2 cell stage resulted in a reduction of pigmentation in the eye and epidermis of one lateral side of the tadpole. Xenopus and human SLC24A5 can rescue the morpholino effects. Further rescue experiments including the use of ion exchange inactive SLC24A5 constructs raise the possibility that full ion exchanger function of NCKX5 may not be required for rescue of pigmentation.


Subject(s)
Skin Pigmentation/genetics , Sodium-Calcium Exchanger/genetics , Xenopus Proteins/genetics , Xenopus laevis/genetics , Animals , Gene Expression Regulation, Developmental/drug effects , Gene Knockdown Techniques , Morpholinos/pharmacology , Mutation/genetics , Phenotype , Skin Pigmentation/drug effects , Sodium-Calcium Exchanger/metabolism , Xenopus Proteins/metabolism , Xenopus laevis/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...