Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
2.
Regul Toxicol Pharmacol ; 151: 105671, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38968967

ABSTRACT

Revised information requirements for endocrine disruptor (ED) assessment of chemicals under the European Union's Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) Regulation have been proposed. Implementation will substantially increase demands for new data to inform ED assessment. This article evaluates the potential animal use and financial resource associated with two proposed ED policy options, and highlights areas where further clarification is warranted. This evaluation demonstrates that studies potentially conducted to meet the proposed requirements could use tens of millions of animals, and that the approach is unlikely to be feasible in practice. Given the challenges with implementing either policy option and the need to minimise the reliance on animal testing, further consideration and clarification is needed on several aspects prior to implementation of the requirements. This includes how testing will be prioritised in a proportionate approach; how to harness new approach methodologies to waive higher-tier animal testing; and need for provision of clear guidance particularly in applying weight-of-evidence approaches. There is now a clear opportunity for the European Commission to lead the way in developing a robust and transparent ED assessment process for industrial chemicals which fully implements replacement, refinement, and reduction of the use of animals (the 3Rs).

3.
Regul Toxicol Pharmacol ; 149: 105619, 2024 May.
Article in English | MEDLINE | ID: mdl-38614220

ABSTRACT

The Xenopus Eleutheroembryonic Thyroid Assay (XETA) was recently published as an OECD Test Guideline for detecting chemicals acting on the thyroid axis. However, the OECD validation did not cover all mechanisms that can potentially be detected by the XETA. This study was therefore initiated to investigate and consolidate the applicability domain of the XETA regarding the following mechanisms: thyroid hormone receptor (THR) agonism, sodium-iodide symporter (NIS) inhibition, thyroperoxidase (TPO) inhibition, deiodinase (DIO) inhibition, glucocorticoid receptor (GR) agonism, and uridine 5'-diphospho-glucuronosyltransferase (UDPGT) induction. In total, 22 chemicals identified as thyroid-active or -inactive in Amphibian Metamorphosis Assays (AMAs) were tested using the XETA OECD Test Guideline. The comparison showed that both assays are highly concordant in identifying chemicals with mechanisms of action related to THR agonism, DIO inhibition, and GR agonism. They also consistently identified the UDPGT inducers as thyroid inactive. NIS inhibition, investigated using sodium perchlorate, was not detected in the XETA. TPO inhibition requires further mechanistic investigations as the reference chemicals tested resulted in opposing response directions in the XETA and AMA. This study contributes refining the applicability domain of the XETA, thereby helping to clarify the conditions where it can be used as an ethical alternative to the AMA.


Subject(s)
Biological Assay , Endocrine Disruptors , Metamorphosis, Biological , Symporters , Thyroid Gland , Animals , Thyroid Gland/drug effects , Thyroid Gland/metabolism , Metamorphosis, Biological/drug effects , Biological Assay/methods , Endocrine Disruptors/toxicity , Xenopus laevis , Receptors, Thyroid Hormone/metabolism , Receptors, Thyroid Hormone/agonists , Iodide Peroxidase/metabolism
4.
Environ Pollut ; 346: 123614, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38387548

ABSTRACT

Amphibians are currently considered to be covered by pesticide Environmental Risk Assessment schemes by surrogacy assumptions of exposure and susceptibility based on typical laboratory test species such as fish, mammals, and birds. While multiple reviews have shown for this approach to be adequate in the case of aquatic stages, the same cannot be definitively stated for terrestrial stages. Concerns have risen that exposure of amphibians is likely to be highly influenced by dermal absorption, primarily due to the high permeability of their skin and the lack of a protective layer, such as fur or feathers. It is thus hypothesized that dermal uptake could be a significant route of exposure. Consequently, it is necessary to determine the relative importance of different exposure routes that might affect the integrated toxicity outcome for terrestrial amphibian life-stages. Here, a one-compartment Toxicokinetic model was derived and tested using a publicly available dataset containing relevant exposure and uptake information for juvenile anurans exposed to 13 different pesticides. Modelled body burdens were then compared to measured burdens for a total of 815 individuals. Overall, a good concordance between modelled and measured values was observed, with the predicted and measured body burdens differing by a factor of 2 on average (overall R2 of 0.80 and correlation coefficient of 0.89), suggesting good predictivity of the model. Accordingly, the model predicts realistic body burdens for a variety of frog and toad species, and overall, for anurans. As the model includes rehydration (implicit in the evaluated studies) but currently does not account for metabolism, it can be seen as a worst-case assessment. We suggest toxicokinetic models, such as the one here presented, could be used to characterize dermal exposure in amphibians, screen for pesticides of concern, and prioritize risk assessment efforts, whilst reducing the need for de novo vertebrate testing.


Subject(s)
Pesticides , Animals , Pesticides/analysis , Soil , Body Burden , Skin , Anura , Mammals/metabolism
5.
Aquat Toxicol ; 267: 106811, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159458

ABSTRACT

The Amphibian Metamorphosis Assay (AMA) is used to determine if a tested chemical has potential to impact the hypothalamic-pituitary-thyroid (HPT) axis of Xenopus laevis tadpoles, while the Fish Short Term Reproduction Assay (FSTRA) assesses potential effects on the hypothalamic-pituitary-gonadal (HPG) axis of fish such as the fathead minnow (Pimephales promelas). Several global regulatory programs routinely require these internationally validated tests be performed to determine the potential endocrine activity of chemicals. As such, they are conducted in accordance with standardized protocols and test criteria, which were originally developed more than a decade ago. Sizeable numbers of AMA and FSTRA studies have since been carried out, which allows for the mining of extensive historical control data (HCD). Such data are useful for investigating the existence of outlier results and aberrant control groups, identifying potential confounding variables, providing context for rare diagnoses, discriminating target from non-target effects, and for refining current testing paradigms. The present paper provides histopathology HCD from 55 AMA studies and 45 fathead minnow FSTRA studies, so that these data may become publicly available and thus aid in the interpretation of future study outcomes. Histopathology is a key endpoint in these assays, in which it is considered to be one of the most sensitive indicators of endocrine perturbation. In the current review, granular explorations of HCD data were used to identify background lesions, to assess the utility of particular diagnostic findings for distinguishing endocrine from non-endocrine effects, and to help determine if specific improvements to established regulatory guidance may be warranted. Knowledge gleaned from this investigation, supplemented by information from other recent studies, provided further context for the interpretation of AMA and FSTRA histopathology results. We recommend HCDs for the AMA and FSTRA be maintained to support the interpretation of study results.


Subject(s)
Cyprinidae , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Reproduction , Endocrine System , Amphibians
6.
Regul Toxicol Pharmacol ; 145: 105501, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37820895

ABSTRACT

Vitellogenin (VTG) is a biomarker for possible endocrine activity of chemicals acting via the estrogen, androgen, or steroidogenesis pathways. VTG is assessed in standardised fish guideline studies conducted for regulatory safety assessment of chemicals. VTG data can be highly variable leading to concerns for potential equivocal, false positive and/or negative outcomes. Consequently, additional fish testing may be required to address uncertainties in the VTG response, and possibly erroneous/missed identification of endocrine activity. To better understand the technical challenges of VTG assessment and reporting for regulatory purposes, a survey was sent to 27 testing laboratories performing these analyses. The survey results from 16 respondents (6 from the UK, 3 from the USA, and 7 from the EU) were analysed and discussed in a follow-up webinar. High variability in background VTG concentrations was widely acknowledged and thought to be associated with fish batch, husbandry, laboratory practices, and several methodological aspects. These include sample collection and storage, VTG quantification, data handling, and the benchmarks used for data acceptability. Information gathered in the survey provides a basis for improving and harmonizing the measurement of VTG in fish, and an opportunity to reassess the suitability of current acceptability criteria in test guidelines.


Subject(s)
Vitellogenins , Water Pollutants, Chemical , Animals , Vitellogenins/metabolism , Laboratories , Fishes/metabolism , Estrogens/metabolism , Endocrine System , Water Pollutants, Chemical/analysis
7.
Ecotoxicol Environ Saf ; 266: 115563, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37827093

ABSTRACT

Vitellogenin (VTG), a biomarker for endocrine activity, is a mechanistic component of the regulatory assessment of potential endocrine-disrupting properties of chemicals. This review of VTG data is based on changes reported for 106 substances in standard fish species. High intra-study and inter-laboratory variability in VTG concentrations was confirmed, as well as discrepancies in interpretation of results based on large differences between fish in the dilution water versus solvent control, or due to the presence of outlier measurements. VTG responses in fish were ranked against predictions for estrogen receptor agonist activity and aromatase inhibition from bioactivity model output and ToxCast in vitro assay results, respectively. These endocrine mechanisms explained most of the VTG responses in the absence of systemic toxicity, the magnitude of the VTG response being proportional to the in vitro potency. Interpretation of the VTG data was sometimes confounded by an alternative endocrine mechanism of action. There was evidence for both false positive and negative responses for VTG synthesis, but overall, it was rare for substances without endocrine activity in vitro to cause a concentration-dependent VTG response in fish in the absence of systemic toxicity. To increase confidence in the VTG results, we recommend improvements in the VTG measurement methodologies and greater transparency in reporting of VTG data (including quality control criteria for assay performance). This review supports the application of New Approach Methodologies (NAMs) by demonstrating that endocrine activity in vitro from mammalian cell lines is predictive for in vivo VTG response in fish, suggesting that in vitro mechanistic data could be used more broadly in decision-making to help reduce animal testing.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Animals , Vitellogenins/metabolism , Fishes/metabolism , Estrogens/metabolism , Endocrine Disruptors/toxicity , Endocrine Disruptors/metabolism , Water Pollutants, Chemical/analysis , Mammals/metabolism
8.
Environ Toxicol Chem ; 42(5): 1061-1074, 2023 05.
Article in English | MEDLINE | ID: mdl-36848316

ABSTRACT

The amphibian metamorphosis assay (AMA) is a key in vivo endocrine screen to investigate chemicals with potential thyroid activity. The test guidelines and associated guidance consider that treatment-related effects on thyroid gland histomorphology automatically result in the assay being considered positive for thyroid activity, independent of the direction of change or conflicting results in the other biological endpoints. An AMA study was conducted with five different feeding rations equivalent to 50%, 30%, 20%, 10%, and 5% of the recommended feeding rate. Biological endpoints relating to growth and development, including thyroid gland histopathology, were evaluated, and the specificity of these endpoints for the determination of thyroid activity was assessed. There was no effect on survival or clinical signs of toxicity. Effects related to feed reduction generally occurred in a feeding ration-response manner and included reduced development stage; reduced body weight and body length metrics; decreased prevalence of thyroid follicular cell hyperplasia and hypertrophy, and the occurrence of thyroid atrophy; reduced liver vacuolation; and the occurrence of liver atrophy. The results indicate that treatment-related histopathological changes in the AMA can be induced by Non-chemical factors; therefore histopathological results are not necessarily diagnostically specific for chemically induced thyroid endocrine activity. Consequently, the interpretation of data from AMA studies should be adjusted accordingly. We recommend that the decision logic presented in the test guidelines and associated guidance be changed to reflect a requirement for directional agreement between the thyroid histopathology findings and the growth and developmental endpoints before it is concluded that a test substance has thyroid endocrine activity. Environ Toxicol Chem 2023;42:1061-1074. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Metamorphosis, Biological , Thyroid Gland , Animals , Xenopus laevis , Larva , Atrophy/pathology
9.
Environ Toxicol Chem ; 42(4): 757-777, 2023 04.
Article in English | MEDLINE | ID: mdl-36789969

ABSTRACT

Multiple in vivo test guidelines focusing on the estrogen, androgen, thyroid, and steroidogenesis pathways have been developed and validated for mammals, amphibians, or fish. However, these tests are resource-intensive and often use a large number of laboratory animals. Developing alternatives for in vivo tests is consistent with the replacement, reduction, and refinement principles for animal welfare considerations, which are supported by increasing mandates to move toward an "animal-free" testing paradigm worldwide. New approach methodologies (NAMs) hold great promise to identify molecular, cellular, and tissue changes that can be used to predict effects reliably and more efficiently at the individual level (and potentially on populations) while reducing the number of animals used in (eco)toxicological testing for endocrine disruption. In a collaborative effort, experts from government, academia, and industry met in 2020 to discuss the current challenges of testing for endocrine activity assessment for fish and amphibians. Continuing this cross-sector initiative, our review focuses on the current state of the science regarding the use of NAMs to identify chemical-induced endocrine effects. The present study highlights the challenges of using NAMs for safety assessment and what work is needed to reduce their uncertainties and increase their acceptance in regulatory processes. We have reviewed the current NAMs available for endocrine activity assessment including in silico, in vitro, and eleutheroembryo models. New approach methodologies can be integrated as part of a weight-of-evidence approach for hazard or risk assessment using the adverse outcome pathway framework. The development and utilization of NAMs not only allows for replacement, reduction, and refinement of animal testing but can also provide robust and fit-for-purpose methods to identify chemicals acting via endocrine mechanisms. Environ Toxicol Chem 2023;42:757-777. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Endocrine Disruptors , Animals , Endocrine Disruptors/toxicity , Endocrine Disruptors/analysis , Fishes , Ecotoxicology , Amphibians , Endocrine System , Risk Assessment , Mammals
10.
Integr Environ Assess Manag ; 19(4): 1089-1109, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36597818

ABSTRACT

The toxicity and ecotoxicity of pesticide active ingredients are evaluated by a number of standardized test methods using vertebrate animals. These standard test methods are required under various regulatory programs for the registration of pesticides. Over the past two decades, additional test methods have been developed with endpoints that are responsive to endocrine activity and subsequent adverse effects. This article examines the available test methods and their endpoints that are relevant to an assessment of endocrine-disrupting properties of pesticides. Furthermore, the article highlights how weight-of-evidence approaches should be applied to determine whether an adverse response in (eco)toxicity tests is caused by an endocrine mechanism of action. The large number of endpoints in the current testing paradigms for pesticides make it unlikely that endocrine activity and adversity is being overlooked. Integr Environ Assess Manag 2023;19:1089-1109. © 2023 Bayer CropScience and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Endocrine Disruptors , Pesticides , Animals , Animals, Wild , Pesticides/toxicity , Endocrine Disruptors/toxicity , Risk Assessment/methods , Vertebrates , Ecotoxicology/methods
11.
Integr Environ Assess Manag ; 19(3): 775-791, 2023 May.
Article in English | MEDLINE | ID: mdl-36281826

ABSTRACT

In order to protect European Union (EU) drinking water resources from chemical contamination, criteria for identifying persistent, mobile, and toxic (PMT) chemicals and very persistent and very mobile (vPvM) chemicals under the EU REACH Regulation were proposed by the German Environment Agency (Umweltbundesamt-UBA). Additionally, new hazard classes for PMT and vPvM substances in the revised EU classification, labeling, and packaging (CLP Regulation) are intended. Therefore, a reliable approach in the identification of potential drinking water resource contaminants is needed. The scientific basis of the property-based PMT/vPvM criteria, focusing on mobility, which dictates the migration of chemical drinking water sources, was evaluated, and a critical analysis of the deviation of sorption metrics from simple behavior was carried out. Based on our evaluation, a Koc may be used for nonionic substances on a screening level only, requiring a higher tier assessment. It is considered inappropriate for hydrophilic and ionizable chemicals, particularly for soils with low organic carbon contents. The nonextractable residue formation is complex and not well understood but remains significant in limiting the mobility of chemicals through soils and sediments. In order to inform the EU commission's work on the introduction of new hazard classes for PMT and vPvM substances into the European legislation, the derivation of a tiered approach is proposed, which utilizes the weight of evidence available, with adoption of appropriate higher tier models commensurate with the nature of the substance and the data available. Integr Environ Assess Manag 2023;19:775-791. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Drinking Water , Ecotoxicology , Water Resources , European Union , Soil , Risk Assessment
13.
Integr Environ Assess Manag ; 18(2): 442-458, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34292658

ABSTRACT

Many regulations are beginning to explicitly require investigation of a chemical's endocrine-disrupting properties as a part of the safety assessment process for substances already on or about to be placed on the market. Different jurisdictions are applying distinct approaches. However, all share a common theme requiring testing for endocrine activity and adverse effects, typically involving in vitro and in vivo assays on selected endocrine pathways. For ecotoxicological evaluation, in vivo assays can be performed across various animal species, including mammals, amphibians, and fish. Results indicating activity (i.e., that a test substance may interact with the endocrine system) from in vivo screens usually trigger further higher-tier in vivo assays. Higher-tier assays provide data on adverse effects on relevant endpoints over more extensive parts of the organism's life cycle. Both in vivo screening and higher-tier assays are animal- and resource-intensive and can be technically challenging to conduct. Testing large numbers of chemicals will inevitably result in the use of large numbers of animals, contradicting stipulations set out within many regulatory frameworks that animal studies be conducted as a last resort. Improved strategies are urgently required. In February 2020, the UK's National Centre for the 3Rs and the Health and Environmental Sciences Institute hosted a workshop ("Investigating Endocrine Disrupting Properties in Fish and Amphibians: Opportunities to Apply the 3Rs"). Over 50 delegates attended from North America and Europe, across academia, laboratories, and consultancies, regulatory agencies, and industry. Challenges and opportunities in applying refinement and reduction approaches within the current animal test guidelines were discussed, and utilization of replacement and/or new approach methodologies, including in silico, in vitro, and embryo models, was explored. Efforts and activities needed to enable application of 3Rs approaches in practice were also identified. This article provides an overview of the workshop discussions and sets priority areas for follow-up. Integr Environ Assess Manag 2022;18:442-458. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Endocrine Disruptors , Amphibians , Animals , Ecotoxicology , Endocrine Disruptors/analysis , Endocrine System/chemistry , Risk Assessment/methods
14.
Environ Toxicol Chem ; 40(8): 2135-2144, 2021 08.
Article in English | MEDLINE | ID: mdl-33939850

ABSTRACT

The amphibian metamorphosis assay (AMA; US Environmental Protection Agency [USEPA] test guideline 890.1100 and Organisation for Economic Co-Operation and Development test guideline 231) has been used for more than a decade to assess the potential thyroid-mediated endocrine activity of chemicals. In 2013, in the context of the Endocrine Disruptor Screening Program of the USEPA, a Scientific Advisory Panel reviewed the results from 18 studies and recommended changes to the AMA test guideline, including a modification to a fixed-stage design rather than a fixed-time (i.e., 21-d) design. We describe an extended test design for the AMA (or EAMA) that includes thyroid histopathology and time to metamorphosis (Nieuwkoop-Faber [NF] stage 62), to address both the issues with the fixed-time design and the specific question of thyroid-mediated adversity in a shorter assay than the larval amphibian growth and development assay (LAGDA; Organisation for Economic Co-Operation and Development test guideline 241), using fewer animals and resources. A demonstration study was conducted with the EAMA (up to NF stage 58) using sodium perchlorate. Data analyses and interpretation of the fixed-stage design of the EAMA are more straightforward than the fixed-time design because the fixed-stage design avoids confounded morphometric measurements and thyroid histopathology caused by varying developmental stages at test termination. It also results in greater statistical power to detect metamorphic delays than the fixed-time design. By preferentially extending the AMA to NF stage 62, suitable data can be produced to evaluate thyroid-mediated adversity and preclude the need to perform a LAGDA for thyroid mode of action analysis. The LAGDA remains of further interest should investigations of longer term effects related to sexual development modulated though the hypothalamus-pituitary-gonadal axis be necessary. However, reproduction assessment or life cycle testing is currently not addressed in the LAGDA study design. This is better addressed by higher tier studies in fish, which should then include specific thyroid-related endpoints. Environ Toxicol Chem 2021;40:2135-2144. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Endocrine Disruptors , Animals , Endocrine Disruptors/toxicity , Metamorphosis, Biological , Thyroid Gland , Xenopus laevis
15.
Environ Toxicol Chem ; 40(7): 2073-2082, 2021 07.
Article in English | MEDLINE | ID: mdl-33818805

ABSTRACT

Predictive toxicity models, including interspecies correlation estimation (ICE) models, are reliable alternatives to animal toxicity testing. The ICE models describe mathematical relationships facilitating toxicity prediction from one surrogate test species to a species of unknown sensitivity. The ICE models were developed from curated aquatic toxicity data for 19 nonionic alcohol ethoxylate (AE) surfactants manufactured through the same process. Comparison of AE-ICE predictions with observed values from external validation datasets indicates a reasonable predictive accuracy. Model predictions were also closer to observed values than predictions from previously published ICE models for other substance groups. Comparison of acute fifth percentile hazard concentrations (HC5s) from species sensitivity distributions enhanced with AE-ICE predictions with chronic HC5s published elsewhere produced an acute-to-chronic ratio of 5, which was used to estimate chronic HC5s. With both acute and chronic HC5s for 14 AE substances, regressions were made relative to their respective liposome-water partitioning coefficients (log K lipw ), resulting in HC5-log K lipw relationships useful in estimating HC5s for AE substances with known composition but with limited or unavailable toxicity data. The findings from this case study further demonstrate that ICE models are viable alternatives to toxicity testing and could be used as weight of evidence in hazard assessment evaluations. Environ Toxicol Chem 2021;40:2073-2082. © 2021 SETAC.


Subject(s)
Water Pollutants, Chemical , Animals , Sensitivity and Specificity , Species Specificity , Surface-Active Agents/toxicity , Toxicity Tests , Water Pollutants, Chemical/toxicity
16.
Crit Rev Toxicol ; 51(9): 729-739, 2021 10.
Article in English | MEDLINE | ID: mdl-35274590

ABSTRACT

The Amphibian Metamorphosis Assay (AMA) is used to identify substances that potentially interfere with the normal function of the hypothalamic-pituitary-thyroid (HPT) axis. Although numerous AMA studies have been performed since the establishment of this assay a decade earlier, a comprehensive, large-scale examination of histopathology data obtained from control larvae has not been performed. The current investigation reviewed 51 AMA experiments conducted at 7 different laboratories in Europe and North America. Dilution water control and/or solvent control specimens from each study (1,335 animals total) had been evaluated microscopically by one of eight anatomic pathologists. In order of descending frequency, the most common findings in prometamorphic Xenopus laevis controls were the core criteria of follicular cell (FC) hypertrophy, FC hyperplasia, thyroid hypertrophy, and thyroid atrophy, respectively. Less frequently recorded were non-core and ad hoc diagnoses, the toxicological relevance and utility of which were in some cases uncertain. As anticipated, the prevalence of FC hypertrophy and FC hyperplasia diagnoses were at least partially dependent on the Nieuwkoop and Faber (NF) stage at sacrifice. The recorded frequencies of each of the four core diagnoses also differed according to pathologist, which suggests that pathologist diagnostic interpretation is a potential source of variability across AMA study outcomes. Based on the current examination of the AMA historical data, and further hands-on experience with this assay, diagnostic approaches to evaluating the histopathology endpoint are discussed, and several recommendations are proposed for the refinement of core diagnostic criteria assessment.


Subject(s)
Metadata , Thyroid Gland , Animals , Hyperplasia , Hypertrophy , Xenopus laevis
18.
Environ Toxicol Chem ; 39(10): 2076-2089, 2020 10.
Article in English | MEDLINE | ID: mdl-32681761

ABSTRACT

Fish acute toxicity tests are conducted as part of regulatory hazard identification and risk-assessment packages for industrial chemicals and plant protection products. The aim of these tests is to determine the concentration which would be lethal to 50% of the animals treated. These tests are therefore associated with suffering in the test animals, and Organisation for Economic Co-operation and Development test guideline 203 (fish, acute toxicity) studies are the most widely conducted regulatory vertebrate ecotoxicology tests for prospective chemical safety assessment. There is great scope to apply the 3Rs principles-the reduction, refinement, and replacement of animals-in this area of testing. An expert ecotoxicology working group, led by the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research, including members from government, academia, and industry, reviewed global fish acute test data requirements for the major chemical sectors. The present study highlights ongoing initiatives and provides an overview of the key challenges and opportunities associated with replacing, reducing, and/or refining fish acute toxicity studies-without compromising environmental protection. Environ Toxicol Chem 2020;39:2076-2089. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Animal Testing Alternatives/methods , Ecotoxicology/methods , Fishes , Hazardous Substances/toxicity , Toxicity Tests, Acute/methods , Animal Testing Alternatives/legislation & jurisprudence , Animals , Ecotoxicology/legislation & jurisprudence , Lethal Dose 50 , Organisation for Economic Co-Operation and Development , Risk Assessment , Toxicity Tests, Acute/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...