Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
J Phys Chem A ; 128(24): 4775-4786, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38836889

ABSTRACT

Calculated potential energy structures and landscapes are very often used to define the sequence of reaction steps in an organometallic reaction mechanism and interpret kinetic isotope effect (KIE) measurements. Underlying most of this structure-to-mechanism translation is the use of statistical rate theories without consideration of atomic/molecular motion. Here we report direct dynamics simulations for an organometallic benzene reductive elimination reaction, where nonstatistical intermediates and dynamic-controlled pathways were identified. Specifically, we report single spin state as well as mixed spin state quasiclassical direct dynamics trajectories in the gas phase and explicit solvent for benzene reductive elimination from Mo and W bridged cyclopentadienyl phenyl hydride complexes ([Me2Si(C5Me4)2]M(H)(Ph), M = Mo and W). Different from the energy landscape mechanistic sequence, the dynamics trajectories revealed that after the benzene C-H bond forming transition state (often called reductive coupling), σ-coordination and π-coordination intermediates are either skipped or circumvented and that there is a direct pathway to forming a spin flipped solvent caged intermediate, which occurs in just a few hundred femtoseconds. Classical molecular dynamics simulations were then used to estimate the lifetime of the caged intermediate, which is between 200 and 400 picoseconds. This indicates that when the η2-π-coordination intermediate is formed, it occurs only after the first formation of the solvent-caged intermediate. This dynamic mechanism intriguingly suggests the possibility that the solvent-caged intermediate rather than a coordination intermediate is responsible (or partially responsible) for the inverse KIE value experimentally measured for W. Additionally, this dynamic mechanism prompted us to calculate the kH/kD KIE value for the C-H bonding forming transition states of Mo and W. Surprisingly, Mo gave a normal value, while W gave an inverse value, albeit small, due to a much later transition state position.

2.
Infect Immun ; 92(5): e0052223, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38629842

ABSTRACT

Streptococcus pneumoniae (pneumococcus) remains a serious cause of pulmonary and systemic infections globally, and host-directed therapies are lacking. The aim of this study was to test the therapeutic efficacy of asapiprant, an inhibitor of prostaglandin D2 signaling, against pneumococcal infection. Treatment of young mice with asapiprant after pulmonary infection with invasive pneumococci significantly reduced systemic spread, disease severity, and host death. Protection was specific against bacterial dissemination from the lung to the blood but had no effect on pulmonary bacterial burden. Asapiprant-treated mice had enhanced antimicrobial activity in circulating neutrophils, elevated levels of reactive oxygen species (ROS) in lung macrophages/monocytes, and improved pulmonary barrier integrity indicated by significantly reduced diffusion of fluorescein isothiocyanate (FITC)-dextran from lungs into the circulation. These findings suggest that asapiprant protects the host against pneumococcal dissemination by enhancing the antimicrobial activity of immune cells and maintaining epithelial/endothelial barrier integrity in the lungs.


Subject(s)
Pneumococcal Infections , Animals , Female , Mice , Disease Models, Animal , Lung/microbiology , Lung/pathology , Mice, Inbred C57BL , Neutrophils/immunology , Neutrophils/drug effects , Pneumococcal Infections/drug therapy , Pneumococcal Infections/microbiology , Reactive Oxygen Species/metabolism , Streptococcus pneumoniae/drug effects
3.
Acta Neuropathol Commun ; 12(1): 15, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38254244

ABSTRACT

Brain metastases occur in 1% of sarcoma cases and are associated with a median overall survival of 6 months. We report a rare case of a brain metastasis with unique radiologic and histopathologic features in a patient with low grade fibromyxoid sarcoma (LGFMS) previously treated with immune checkpoint inhibitor (ICI) therapy. The lone metastasis progressed in the midbrain tegmentum over 15 months as a non-enhancing, T2-hyperintense lesion with peripheral diffusion restriction, mimicking a demyelinating lesion. Histopathology of the lesion at autopsy revealed a rich infiltrate of tumor-associated macrophages (TAMs) with highest density at the leading edge of the metastasis, whereas there was a paucity of lymphocytes, suggestive of an immunologically cold environment. Given the important immunosuppressive and tumor-promoting functions of TAMs in gliomas and carcinoma/melanoma brain metastases, this unusual case provides an interesting example of a dense TAM infiltrate in a much rarer sarcoma brain metastasis.


Subject(s)
Brain Neoplasms , Glioma , Sarcoma , Humans , Tumor-Associated Macrophages , Brain , Tumor Microenvironment
5.
Sci Transl Med ; 15(717): eadg1485, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37820010

ABSTRACT

To date, there are no approved treatments for the diminished strength and paralysis that result from the loss of peripheral nerve function due to trauma, heritable neuromuscular diseases, or aging. Here, we showed that denervation resulting from transection of the sciatic nerve triggered a marked increase in the prostaglandin-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in skeletal muscle in mice, providing evidence that injury drives early expression of this aging-associated enzyme or gerozyme. Treating mice with a small-molecule inhibitor of 15-PGDH promoted regeneration of motor axons and formation of neuromuscular synapses leading to an acceleration in recovery of force after an acute nerve crush injury. In aged mice with chronic denervation of muscles, treatment with the 15-PGDH inhibitor increased motor neuron viability and restored neuromuscular junctions and function. These presynaptic changes synergized with previously reported muscle tissue remodeling to result in a marked increase in the strength of aged muscles. We further found that 15-PGDH aggregates defined the target fibers that are histopathologic hallmarks of human neurogenic myopathies, suggesting that the gerozyme may be involved in their etiology. Our data suggest that inhibition of 15-PGDH may constitute a therapeutic strategy to physiologically boost prostaglandin E2, restore neuromuscular connectivity, and promote recovery of strength after acute or chronic denervation due to injury, disease, or aging.


Subject(s)
Hydroxyprostaglandin Dehydrogenases , Synapses , Mice , Animals , Humans , Aged , Prostaglandins , Muscle, Skeletal , Denervation/methods , Nerve Regeneration
7.
JID Innov ; 3(2): 100177, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36876220

ABSTRACT

Psoriasis is characterized by intense pruritus, with a subset of individuals with psoriasis experiencing thermal hypersensitivity. However, the pathophysiology of thermal hypersensitivity in psoriasis and other skin conditions remains enigmatic. Linoleic acid is an omega-6 fatty acid that is concentrated in the skin, and oxidation of linoleic acid into metabolites with multiple hydroxyl and epoxide functional groups has been shown to play a role in skin barrier function. Previously, we identified several linoleic acid‒derived mediators that were more concentrated in psoriatic lesions, but the role of these lipids in psoriasis remains unknown. In this study, we report that two such compounds-9,10-epoxy-13-hydroxy-octadecenoate and 9,10,13-trihydroxy-octadecenoate-are present as free fatty acids and induce nociceptive behavior in mice but not in rats. By chemically stabilizing 9,10-epoxy-13-hydroxy-octadecenoate and 9,10,13-trihydroxy-octadecenoate through the addition of methyl groups, we observed pain and hypersensitization in mice. The nociceptive responses suggest an involvement of the TRPA1 channel, whereas hypersensitive responses induced by these mediators may require both TRPA1 and TRPV1 channels. Furthermore, we showed that 9,10,13-trihydroxy-octadecenoate‒induced calcium transients in sensory neurons are mediated through the Gßγ subunit of an unidentified G-protein coupled receptor (GPCR). Overall, mechanistic insights from this study will guide the development of potential therapeutic targets for the treatment of pain and hypersensitivity.

8.
Mol Cell ; 83(1): 121-138.e7, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36521490

ABSTRACT

Cell cycle (CC) facilitates cell division via robust, cyclical gene expression. Protective immunity requires the expansion of pathogen-responsive cell types, but whether CC confers unique gene expression programs that direct the subsequent immunological response remains unclear. Here, we demonstrate that single macrophages (MFs) adopt different plasticity states in CC, which leads to heterogeneous cytokine-induced polarization, priming, and repolarization programs. Specifically, MF plasticity to interferon gamma (IFNG) is substantially reduced during S-G2/M, whereas interleukin 4 (IL-4) induces S-G2/M-biased gene expression, mediated by CC-biased enhancers. Additionally, IL-4 polarization shifts the CC-phase distribution of MFs toward the G2/M phase, providing a subpopulation-specific mechanism for IL-4-induced, dampened IFNG responsiveness. Finally, we demonstrate CC-dependent MF responses in murine and human disease settings in vivo, including Th2-driven airway inflammation and pulmonary fibrosis, where MFs express an S-G2/M-biased tissue remodeling gene program. Therefore, MF inflammatory and regenerative responses are gated by CC in a cyclical, phase-dependent manner.


Subject(s)
Chromatin , Interleukin-4 , Humans , Mice , Animals , Interleukin-4/genetics , Interleukin-4/pharmacology , Chromatin/genetics , Chromatin/metabolism , Macrophages/metabolism , Interferon-gamma/genetics , Interferon-gamma/pharmacology , Cell Cycle/genetics , Cell Division
9.
Elife ; 112022 06 13.
Article in English | MEDLINE | ID: mdl-35695839

ABSTRACT

RNA-binding proteins (RBPs), essential for skeletal muscle regeneration, cause muscle degeneration and neuromuscular disease when mutated. Why mutations in these ubiquitously expressed RBPs orchestrate complex tissue regeneration and direct cell fate decisions in skeletal muscle remains poorly understood. Single-cell RNA-sequencing of regenerating Mus musculus skeletal muscle reveals that RBP expression, including the expression of many neuromuscular disease-associated RBPs, is temporally regulated in skeletal muscle stem cells and correlates with specific stages of myogenic differentiation. By combining machine learning with RBP engagement scoring, we discovered that the neuromuscular disease-associated RBP Hnrnpa2b1 is a differentiation-specifying regulator of myogenesis that controls myogenic cell fate transitions during terminal differentiation in mice. The timing of RBP expression specifies cell fate transitions by providing post-transcriptional regulation of messenger RNAs that coordinate stem cell fate decisions during tissue regeneration.


Subject(s)
Muscle Development , Muscle Fibers, Skeletal , Animals , Cell Differentiation , Mice , Muscle Development/genetics , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
10.
iScience ; 25(6): 104444, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35733848

ABSTRACT

Skeletal muscle stem cells, or satellite cells (SCs), are essential to regenerate and maintain muscle. Quiescent SCs reside in an asymmetric niche between the basal lamina and myofiber membrane. To repair muscle, SCs activate, proliferate, and differentiate, fusing to repair myofibers or reacquiring quiescence to replenish the SC niche. Little is known about when SCs reacquire quiescence during regeneration or the cellular processes that direct SC fate decisions. We find that most SCs reacquire quiescence 5-10 days after muscle injury, following differentiation and fusion of most cells to regenerate myofibers. Single-cell sequencing of myogenic cells in regenerating muscle identifies SCs reacquiring quiescence and reveals that noncell autonomous signaling networks influence SC fate decisions during regeneration. SC transplantation experiments confirm that the regenerating environment influences SC fate. We define a window for SC repopulation of the niche, emphasizing the temporal contribution of the regenerative muscle environment on SC fate.

11.
Methods Mol Biol ; 2413: 97-106, 2022.
Article in English | MEDLINE | ID: mdl-35044658

ABSTRACT

Pain associated with chemotherapy and radiation therapy is one of the most common reasons for discontinuation of these treatments and has a dramatic effect on the quality of life in cancer patients. However, the mechanisms underlying chemotherapy and radiation therapy associated with pain are not well understood. Pain sensations are mediated through sensory neurons whose cell bodies are located in the dorsal root ganglia (DRG). Pain mediators activate these sensory neurons causing an influx of ions, including calcium. One common technique to study pain is to use primary cell culturing mouse DRG to study this calcium influx in vitro. This protocol details from an isolation to culture and maintenance of DRG neurons and functional recording using calcium imaging caused by either pain mediators or neuronal sensitization that are induced by drugs that are often used in the treatment of cancer.


Subject(s)
Calcium , Quality of Life , Animals , Calcium/pharmacology , Cells, Cultured , Ganglia, Spinal , Humans , Mice , Pain , Sensory Receptor Cells/physiology
12.
J Gen Physiol ; 154(1)2022 01 03.
Article in English | MEDLINE | ID: mdl-34731883

ABSTRACT

Duchenne muscular dystrophy (DMD) is an X-linked dystrophin-minus muscle-wasting disease. Ion homeostasis in skeletal muscle fibers underperforms as DMD progresses. But though DMD renders these excitable cells intolerant of exertion, sodium overloaded, depolarized, and spontaneously contractile, they can survive for several decades. We show computationally that underpinning this longevity is a strikingly frugal, robust Pump-Leak/Donnan (P-L/D) ion homeostatic process. Unlike neurons, which operate with a costly "Pump-Leak-dominated" ion homeostatic steady state, skeletal muscle fibers operate with a low-cost "Donnan-dominated" ion homeostatic steady state that combines a large chloride permeability with an exceptionally small sodium permeability. Simultaneously, this combination keeps fiber excitability low and minimizes pump expenditures. As mechanically active, long-lived multinucleate cells, skeletal muscle fibers have evolved to handle overexertion, sarcolemmal tears, ischemic bouts, etc.; the frugality of their Donnan dominated steady state lets them maintain the outsized pump reserves that make them resilient during these inevitable transient emergencies. Here, P-L/D model variants challenged with DMD-type insult/injury (low pump-strength, overstimulation, leaky Nav and cation channels) show how chronic "nonosmotic" sodium overload (observed in DMD patients) develops. Profoundly severe DMD ion homeostatic insult/injury causes spontaneous firing (and, consequently, unwanted excitation-contraction coupling) that elicits cytotoxic swelling. Therefore, boosting operational pump-strength and/or diminishing sodium and cation channel leaks should help extend DMD fiber longevity.


Subject(s)
Longevity , Muscular Dystrophy, Duchenne , Dystrophin , Humans , Muscle Contraction , Muscle Fibers, Skeletal , Muscle, Skeletal
13.
NPJ Digit Med ; 4(1): 145, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34620993

ABSTRACT

Biology has become a prime area for the deployment of deep learning and artificial intelligence (AI), enabled largely by the massive data sets that the field can generate. Key to most AI tasks is the availability of a sufficiently large, labeled data set with which to train AI models. In the context of microscopy, it is easy to generate image data sets containing millions of cells and structures. However, it is challenging to obtain large-scale high-quality annotations for AI models. Here, we present HALS (Human-Augmenting Labeling System), a human-in-the-loop data labeling AI, which begins uninitialized and learns annotations from a human, in real-time. Using a multi-part AI composed of three deep learning models, HALS learns from just a few examples and immediately decreases the workload of the annotator, while increasing the quality of their annotations. Using a highly repetitive use-case-annotating cell types-and running experiments with seven pathologists-experts at the microscopic analysis of biological specimens-we demonstrate a manual work reduction of 90.60%, and an average data-quality boost of 4.34%, measured across four use-cases and two tissue stain types.

14.
RNA Biol ; 18(sup1): 128-138, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34412568

ABSTRACT

Ribonucleoprotein (RNP) assemblies are ubiquitous in eukaryotic cells and have functions throughout RNA transcription, splicing, and stability. Of the RNA-binding proteins that form RNPs, TAR DNA-binding protein of 43 kD (TDP43) is of particular interest due to its essential nature and its association with disease. TDP43 plays critical roles in RNA metabolism, many of which require its recruitment to RNP granules such as stress granules, myo-granules, and neuronal transport granules. Moreover, the presence of cytoplasmic TDP43-positive inclusions is a pathological hallmark of several neurodegenerative diseases. Despite the pervasiveness of TDP43 aggregates, TDP43 mutations are exceedingly rare, suggesting that aggregation may be linked to dysregulation of TDP43 function. Oligomerization is a part of normal TDP43 function; thus, it is of interest to understand what triggers the irreversible aggregation that is seen in disease. Herein, we examine TDP43 functions, particularly in RNP granules, and the mechanisms which may explain pathological TDP43 aggregation.


Subject(s)
Cytoplasmic Granules/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Neurodegenerative Diseases/pathology , Protein Aggregates/physiology , Humans , Neurodegenerative Diseases/metabolism
15.
Neuron ; 109(10): 1675-1691.e9, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33848474

ABSTRACT

Tau aggregates contribute to neurodegenerative diseases, including frontotemporal dementia and Alzheimer's disease (AD). Although RNA promotes tau aggregation in vitro, whether tau aggregates in cells contain RNA is unknown. We demonstrate, in cell culture and mouse brains, that cytosolic and nuclear tau aggregates contain RNA with enrichment for small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). Nuclear tau aggregates colocalize with and alter the composition, dynamics, and organization of nuclear speckles, membraneless organelles involved in pre-mRNA splicing. Moreover, several nuclear speckle components, including SRRM2, mislocalize to cytosolic tau aggregates in cells, mouse brains, and brains of individuals with AD, frontotemporal dementia (FTD), and corticobasal degeneration (CBD). Consistent with these alterations, we observe that the presence of tau aggregates is sufficient to alter pre-mRNA splicing. This work identifies tau alteration of nuclear speckles as a feature of tau aggregation that may contribute to the pathology of tau aggregates.


Subject(s)
Alzheimer Disease/metabolism , Cell Nucleus/metabolism , RNA, Small Nucleolar/metabolism , tau Proteins/metabolism , Alzheimer Disease/pathology , Animals , Cell Nucleus/ultrastructure , Cytosol/metabolism , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Protein Binding , Protein Transport , RNA Splicing , RNA-Binding Proteins/metabolism
16.
Cell Rep ; 31(1): 107472, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32268102

ABSTRACT

Chronic allergic itch is a common symptom affecting millions of people and animals, but its pathogenesis is not fully explained. Herein, we show that periostin, abundantly expressed in the skin of patients with atopic dermatitis (AD), induces itch in mice, dogs, and monkeys. We identify the integrin αVß3 expressed on a subset of sensory neurons as the periostin receptor. Using pharmacological and genetic approaches, we inhibited the function of neuronal integrin αVß3, which significantly reduces periostin-induced itch in mice. Furthermore, we show that the cytokine TSLP, the application of AD-causing MC903 (calcipotriol), and house dust mites all induce periostin secretion. Finally, we establish that the JAK/STAT pathway is a key regulator of periostin secretion in keratinocytes. Altogether, our results identify a TSLP-periostin reciprocal activation loop that links the skin to the spinal cord via peripheral sensory neurons, and we characterize the non-canonical functional role of an integrin in itch.


Subject(s)
Cell Adhesion Molecules/metabolism , Integrins/metabolism , Pruritus/metabolism , Animals , Cell Adhesion Molecules/physiology , Dermatitis, Atopic/etiology , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Dogs , Female , Hypersensitivity/physiopathology , Integrin alpha5/metabolism , Integrin beta3/metabolism , Keratinocytes/metabolism , Male , Mice , Primates , Pruritus/pathology , Sensory Receptor Cells/metabolism , Skin/metabolism
17.
Front Neurosci ; 14: 77, 2020.
Article in English | MEDLINE | ID: mdl-32116521

ABSTRACT

Arthritis, including osteoarthritis (OA) and other musculoskeletal-associated pain, is a worldwide problem, however, effective drug options are limited. Several receptors, neurotransmitters, and endogenous mediators have been identified in rodent models, but the relevance of these molecules in disease-associated pain is not always clear. Artemin, a neurotrophic factor, and its receptor, glial-derived neurotrophic factor (GDNF) family receptor alpha-3 (GFRα3), have been identified as involved in pain in rodents. Their role in OA-associated pain is unknown. To explore a possible association, we analyzed tissue from naturally occurring OA in dogs to characterize the correlation with chronic pain. We used behavioral assessment, objective measures of limb use, and molecular tools to identify whether artemin and GFRα3 might be associated with OA pain. Our results using banked tissue from well-phenotyped dogs indicates that artemin/GFRα3 may play an important, and hitherto unrecognized, role in chronic OA-associated pain. Elevated serum levels of artemin from osteoarthritic humans compared to healthy individuals suggest translational relevance. Our data provide compelling evidence that the artemin/GFRα3 signaling pathway may be important in OA pain in both non-humans and humans and may ultimately lead to novel therapeutics.

18.
Langmuir ; 36(8): 1878-1886, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32013448

ABSTRACT

Here, we address the issue of finding correct CF2/CF3 area ratios from X-ray photoelectron spectroscopy (XPS) C 1s narrow scans of materials containing -CH2CH2(CF2)nCF3 (n = 0, 1, 2, ...) moieties. For this work, we modified silicon wafers with four different fluorosilanes. The smallest had a trifluoropropyl (n = 0) moiety, followed by nonafluorohexyl (n = 3), tridecafluoro (n = 5), and finally, heptadecafluoro (n = 7) moieties. Monolayer deposition of the fluorosilanes was confirmed by spectroscopic ellipsometry, wetting, and XPS. Analysis of the trifluoropropyl (n = 0) surface and a sample of polytetrafluoroethylene provided pure-component XPS spectra for -CF3 and -(CF2)n- moieties, respectively. Initial XPS C 1s peak fitting, which follows the literature precedent, was not entirely adequate. To address this issue, six different fitting approaches with increasing complexity and/or input from the Hartree-Fock theory (HF) were considered. Ultimately, we show that by combining HF results with empirical analyses, we obtain more accurate CF2/CF3 area ratios while maintaining high-quality fits.

19.
Acta Derm Venereol ; 99(12): 1131-1135, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31449313

ABSTRACT

Most canine visits to veterinarians are related to skin diseases with itch being the chief complaint. Historically, several itch-inducing molecules and pathways have been identified in mice, but whether or not these are similar in dogs is not yet known. Herein, we set out to study the expression of pruritogenic neuropeptides, their cognate receptors with a limited functional validation thereof using a multidisciplinary approach. We demonstrated the expression of somatostatin and other major neuropeptides and receptors in canine dorsal root ganglia neurons. Next, we showed that interleukin-31, serotonin, and histamine activate such neurons. Furthermore, we demonstrated the physiological release of somatostatin from dog dorsal root ganglia neurons in response to several endogenous itch mediators. In summary, our results provide the first evidence that dogs use similar pruritogenic pathways to those characterized in mice and we thus identify multiple targets for the future treatment of itch in dogs.


Subject(s)
Ganglia, Spinal/metabolism , Neuropeptides/metabolism , Pruritus/metabolism , Receptors, Neuropeptide/metabolism , Spinal Cord/metabolism , Animals , Calcium Signaling , Cells, Cultured , Dogs , Female , Ganglia, Spinal/physiopathology , Gene Expression Regulation , Male , Neuropeptides/genetics , Pruritus/genetics , Pruritus/physiopathology , Receptors, Neuropeptide/genetics , Spinal Cord/physiopathology
20.
Nature ; 563(7732): 508-513, 2018 11.
Article in English | MEDLINE | ID: mdl-30464263

ABSTRACT

A dominant histopathological feature in neuromuscular diseases, including amyotrophic lateral sclerosis and inclusion body myopathy, is cytoplasmic aggregation of the RNA-binding protein TDP-43. Although rare mutations in TARDBP-the gene that encodes TDP-43-that lead to protein misfolding often cause protein aggregation, most patients do not have any mutations in TARDBP. Therefore, aggregates of wild-type TDP-43 arise in most patients by an unknown mechanism. Here we show that TDP-43 is an essential protein for normal skeletal muscle formation that unexpectedly forms cytoplasmic, amyloid-like oligomeric assemblies, which we call myo-granules, during regeneration of skeletal muscle in mice and humans. Myo-granules bind to mRNAs that encode sarcomeric proteins and are cleared as myofibres mature. Although myo-granules occur during normal skeletal-muscle regeneration, myo-granules can seed TDP-43 amyloid fibrils in vitro and are increased in a mouse model of inclusion body myopathy. Therefore, increased assembly or decreased clearance of functionally normal myo-granules could be the source of cytoplasmic TDP-43 aggregates that commonly occur in neuromuscular disease.


Subject(s)
Amyloid/metabolism , DNA-Binding Proteins/metabolism , Muscle, Skeletal/physiology , RNA, Messenger/metabolism , Regeneration , TDP-43 Proteinopathies/metabolism , Amyloid/chemistry , Amyloid/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Cytoplasm/metabolism , DNA-Binding Proteins/chemistry , Female , Humans , Male , Mice , Models, Biological , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Sarcomeres/metabolism , TDP-43 Proteinopathies/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...