Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Mol Genet Genomics ; 298(6): 1579-1589, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37923792

ABSTRACT

Upland cotton (Gossypium hirsutum) is the most important fiber crop for the global textile industry. Fusarium oxysporum f. sp. vasinfectum (FOV) is one of the most destructive soil-borne fungal pathogens in cotton. Among eight pathogenic races and other strains, FOV race 4 (FOV4) is the most virulent race in US cotton production. A single nucleotide polymorphism (SNP) in a glutamate receptor-like gene (GhGLR4.8) on chromosome D03 was previously identified and validated to confer resistance to FOV race 7, and targeted genome sequencing demonstrated that it was also associated with resistance to FOV4. The objective of this study was to develop an easy and convenient PCR-based marker assay. To target the resistance SNP, a forward primer for the SNP with a mismatch in the 3rd position was designed for both the resistance (R) and susceptibility (S) alleles, respectively, with addition of 20-mer T7 promoter primer to the 5' end of the forward primer for the R allele. The two forward primers, in combination with each of five common reverse primers, were targeted to amplify amplicons of 50-260 bp in size with R and S alleles differing in 20 bp. Results showed that each of three common reverse primers in combination with the two forward primers produced polymorphic markers between R and S plants that were consistent with the targeted genome sequencing results. The polymorphism was distinctly resolved using both polyacrylamide and agarose gel electrophoreses. In addition, a sequence comparative analysis between the resistance gene and homologous sequences in sequenced tetraploid and diploid A and D genome species showed that none of the species possessed the resistance gene allele, suggesting its recent origin from a natural point mutation. The allele-specific PCR-based SNP typing method based on a three-primer combination provides a fast and convenient marker-assisted selection method to search and select for FOV4-resistant Upland cotton.


Subject(s)
Fusarium , Gossypium , Gossypium/genetics , Gossypium/microbiology , Alleles , Polymorphism, Single Nucleotide/genetics , Fusarium/genetics , Polymerase Chain Reaction , Chromosomes, Plant , Plant Diseases/genetics , Plant Diseases/microbiology
2.
J Nematol ; 55(1): 20230024, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37288386

ABSTRACT

A three-year rotation of cotton (Gossypium hirsutum) cultivars either resistant (R) or susceptible (S) to Rotylenchulus reniformis and fallow (F) was examined for effect on cotton yield and nematode density. In year 1, 2, and 3, the resistant cultivar (DP 2143NR B3XF) yielded 78, 77, and 113% higher than the susceptible cultivar (DP 2044 B3XF). Fallow in year 1 followed by S in year 2 (F1S2) improved yield in year 2 by 24% compared with S1S2, but not as much as R1S2 (41% yield increase over S1S2). One year of fallow followed by R (F1R2) had lower yield in year 2 (11% reduction) than R1R2. The highest yield after three years of these rotations occurred with R1R2R3, followed by R1S2R3 (17% less yield) and F1F2S3 (35% less yield). Rotylenchulus reniformis density in soil averaged 57, 65, and 70% lower (year 1, 2, 3, respectively) in R1R2R3 compared with S1S2S3. In years 1 and 2, LOG10 transformed nematode density (LREN) was lower in F1, and F1F2, than for all other combinations. In year 3, the lowest LREN were associated with R1R2R3, F1S2F3, and F1F2S3. The highest LREN were associated with F1R2S3, F1S2S3, S1S2S3, R1R2S3, and R1S2S3. The combination of higher yield and lower nematode density will be a strong incentive for producers to use the R. reniformis resistant cultivars continuously.

3.
Mol Genet Genomics ; 298(4): 895-903, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37120777

ABSTRACT

Fusarium wilt caused by the soil-borne fungus Fusarium oxysporum f. sp. vasinfectum (FOV) race 4 (FOV4) has become one of the most important emerging diseases in US cotton production. Numerous QTLs have been reported for resistance to FOV; however, no major FOV4-resistance QTL or gene has been identified and used in breeding Upland cotton (Gossypium hirsutum) for FOV4 resistance. In this study, a panel of 223 Chinese Upland cotton accessions was evaluated for FOV4 resistance based on seedling mortality rate (MR) and stem and root vascular discoloration (SVD and RVD). SNP markers were developed based on targeted genome sequencing using AgriPlex Genomics. The chromosome region at 2.130-2.292 Mb on D03 was significantly correlated with both SVD and RVD but not with MR. Based on the two most significant SNP markers, accessions homozygous for AA or TT SNP genotype averaged significantly lower SVD (0.88 vs. 2.54) and RVD (1.46 vs. 3.02) than those homozygous for CC or GG SNP genotype. The results suggested that a gene or genes within the region conferred resistance to vascular discoloration caused by FOV4. The Chinese Upland accessions had 37.22% homozygous AA or TT SNP genotype and 11.66% heterozygous AC or TG SNP genotype, while 32 US elite public breeding lines all had the CC or GG SNP genotype. Among 463 obsolete US Upland accessions, only 0.86% possessed the AA or TT SNP genotype. This study, for the first time, has developed diagnostic SNPs for marker-assisted selection and identified FOV4-resistant Upland germplasms with the SNPs.


Subject(s)
Fusarium , Gossypium , Gossypium/genetics , Gossypium/microbiology , Phenotype , Polymorphism, Single Nucleotide/genetics , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology
4.
Phytopathology ; 113(5): 904-916, 2023 May.
Article in English | MEDLINE | ID: mdl-36647181

ABSTRACT

Fusarium oxysporum f. sp. vasinfectum race 4 (FOV4) is a soilborne fungal pathogen threatening U.S. cotton production. The objective of this study was to develop a reliable and efficient method to evaluate cotton for FOV4 resistance based on taproot rot during seed germination through five growth chamber tests and two greenhouse tests. Seeds from eight cotton cultivars (Set 1) were germinated in a paper towel for 6 days, and taproots were inoculated with a FOV4 conidial suspension using three inoculation methods (i.e., taproot dipping, taproot wounding, and paper towel drenching), in addition to seed soaking before germination. The taproot rot-based disease incidence (DI) and disease severity rating (DSR), seed germination percentage (SGP), and plant fresh weight (PFW) were measured 7 days after inoculation. Taproot dipping was the most efficient and reliable evaluation method. The SGP and PFW were not significantly correlated with the DI and DSR, making them inappropriate to use in resistance evaluation. Pima DP 359 RF and PHY 881 RF were the most resistant with the lowest root rot. The taproot dipping method was repeated in another test and confirmed in two tests using another set of eight cultivars (Set 2). The taproot rot-based DSR at germination was significantly correlated with the DSR at the seedling stage in the greenhouse in both sets and with previous results in seedling mortality in the greenhouse and field in Set 2. The results suggest that the response to FOV4 infections at the seed germination stage is overall congruent with that at the seedling stage.


Subject(s)
Fusarium , Fusarium/physiology , Germination , Seeds , Plant Diseases/microbiology , Gossypium , Seedlings
5.
J Nematol ; 54(1): 20220017, 2022 Feb.
Article in English | MEDLINE | ID: mdl-36120511

ABSTRACT

Cotton (Gossypium hirsutum) cultivar trials were conducted in four fields (6 trials total) with Meloidogyne incognita (Mi)/Fusarium oxysporum f. sp. vasinfectum (Fov) from 2019 to 2021. Cotton cultivars were divided into groups based on company/Mi resistance: S = susceptible to Mi; R-FM, R-DP, and R-PHY = resistance to Mi in FiberMax®, Deltapine®, and Phytogen® cultivars, respectively; ST 4946GLB2 (moderate resistance to Mi and observed field tolerance to Fov); and ST 5600B2XF (resistance to Mi). The S and R-FM groups had the highest transformed Mi densities LOG10(Mi + 1) (LMi = 3.22 and 3.01, respectively), while R-DP and R-PHY had the lowest LMi (2.21 and 1.85, respectively). Plant mortality (%) was higher for R-DP (28.1%) than for all other groups except ST 5600B2XF (24.8%). Mi-susceptible cultivars averaged 23.3% mortality. Relative yield (0-1 scale) was higher for ST 4946GLB2 (0.706) and R-PHY (0.635) than for R-DP (0.530), ST 5600B2XF (0.578), and S (0.491). All groups except R-DP averaged higher relative yield than the susceptible cultivars. ST 4946GLB2 had the lowest mortality (16.5%) and highest relative yield, while R-DP cultivars had the highest mortality and no difference in relative yield from the Mi-susceptible cultivars. The group of R-DP cultivars had excellent Mi resistance but were susceptible to Fov. No cultivars were identified with high resistance to Fov.

6.
Front Plant Sci ; 13: 900131, 2022.
Article in English | MEDLINE | ID: mdl-35769301

ABSTRACT

Fusarium wilt caused by Fusarium oxysporum f. sp. vasinfectum race 4 (FOV4) is an early season disease causing root rot, seedling wilt, and death. To develop an appropriate field evaluation method for resistance to FOV4 in cotton breeding, the objectives of this study were to investigate the effects of cultivar, planting date, and inoculum density on disease progression in 2020-2021. Results showed that the usual local mid-April planting had the lowest disease severity (DSR) or mortality rate (MR) in 2020 and 2021. DSR or MR increased at the late April and early May plantings in both years and reached the highest at the early May planting in 2020, while MR in 2021 was followed by a decrease in the late May planting and reached the highest in the mid-June planting. Local daily low temperatures between mid-April and mid-June were favorable for FOV4 infections, whereas daily high temperatures at 35°C or higher suppressed wilt severity. When seedlings at the 2-true leaf stage were inoculated with 104, 105, 106, and 107 conidia ml-1 per plant in 2020, DSR was low but a linear relationship between inoculum density and DSR was observed. When a FOV4-infested soil supplemented with artificial inoculation was used, disease progression in three moderately susceptible or moderately resistant cultivars followed a linear model, while it followed a quadratic model in the highly susceptible Pima S-7 cultivar only. Among the other three cultivars, FM 2334GLT had the lowest DSR or MR except for one planting date in both years, followed by PHY 725 RF and Pima PHY 881 RF in ascending order, which were consistent with the difference in regression coefficients of the linear models. This study demonstrates that disease progression curves due to FOV4 can be used to compare responses to FOV4 infections among cotton genotypes in cotton breeding and genetic studies, regardless of planting date and inoculation method.

7.
Mol Genet Genomics ; 297(2): 319-332, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35020076

ABSTRACT

KEY MESSAGE: A backcross inbred line population of cotton was evaluated for Fusarium wilt race 4 resistance at different days after inoculation (DAI). Both constitutively expressed and developmentally regulated QTLs were detected. The soil-borne fungus Fusarium oxysporum f. sp. vasinfectum (FOV) race 4 (FOV4) causes Fusarium wilt including seedling mortality in cotton. A backcross inbred line (BIL) population of 181 lines, derived from a bi-parental cross of moderately resistant non-recurrent Hai 7124 (Gossypium barbadense) and recurrent parent CCRI 36 (G. hirsutum), was evaluated under temperature-controlled conditions for FOV4 resistance with artificial inoculations. Based on three replicated tests evaluated at 7, 14, 21, and 28 days after inoculation (DAI), only 2-5 BILs showed lower disease severity ratings (DSR) than the parents while 22-50 BILs were more susceptible, indicating transgressive segregation toward susceptibility. Although DSR were overall congruent between DAI, there were many BILs displaying different responses to FOV4 across DAI. Genetic mapping using 7709 SNP markers identified 42 unique QTLs for four evaluation parameters- disease incidence (DI), DSR, mortality rate (MR), and area under disease progress curve (AUDPC), including 26 for two or more parameters. All five QTLs for AUDPC were co-localized with QTLs for DI, DSR, and/or MR at one or two DAI, indicating the unnecessary use of AUDPC in QTL mapping for FOV4 resistance. Those common QTLs explained the significant positive associations between parameters observed. Ten common QTLs with negative or positive additive effects were detected between DAI. DAI-specific and consistent QTLs were detected between DAI in cotton for the first time, suggesting the existence of both constitutively expressed and developmentally regulated QTLs for FOV4 resistance and the importance of evaluating genetic populations for FOV4 resistance at different growth stages.


Subject(s)
Fusarium , Fusarium/genetics , Gossypium/genetics , Gossypium/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Quantitative Trait Loci/genetics
8.
Plant Dis ; 106(8): 2228-2238, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34978874

ABSTRACT

Meta-analysis was used to compare yield protection and nematode suppression provided by two seed-applied and two soil-applied nematicides against Meloidogyne incognita and Rotylenchulus reniformis on cotton across 3 years and several trial locations in the U.S. Cotton Belt. Nematicides consisted of thiodicarb- and fluopyram-treated seed, aldicarb and fluopyram applied in furrow, and combinations of the seed treatments and soil-applied fluopyram. The nematicides had no effect on nematode reproduction or root infection but had a significant impact on seed cotton yield response ([Formula: see text]), with an average increase of 176 and 197 kg/ha relative to the nontreated control in M. incognita and R. reniformis infested fields, respectively. However, because of significant variation in yield protection and nematode suppression by nematicides, five or six moderator variables (cultivar resistance [M. incognita only], nematode infestation level, nematicide treatment, application method, trial location, and growing season) were used depending on nematode species. In M. incognita-infested fields, greater yield protection was observed with nematicides applied in furrow and with seed-applied + in-furrow than with solo seed-applied nematicide applications. Most notable of these in-furrow nematicides were aldicarb and fluopyram (>131 g/ha) with or without a seed-applied nematicide compared with thiodicarb. In R. reniformis-infested fields, moderator variables provided no further explanation of the variation in yield response produced by nematicides. Furthermore, moderator variables provided little explanation of the variation in nematode suppression by nematicides in M. incognita- and R. reniformis-infested fields. The limited explanation by the moderator variables on the field efficacy of nematicides in M. incognita- and R. reniformis-infested fields demonstrates the difficulty of managing these pathogens with nonfumigant nematicides across the U.S. Cotton Belt.


Subject(s)
Antinematodal Agents , Tylenchoidea , Aldicarb/toxicity , Animals , Antinematodal Agents/toxicity , Benzamides/toxicity , Gossypium , Pyridines/toxicity , Seeds , Soil , Tylenchoidea/drug effects , Tylenchoidea/physiology , United States
9.
Phytopathology ; 112(4): 852-861, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34503350

ABSTRACT

Fusarium oxysporum f. sp. vasinfectum race 4 (FOV4) causes an early season cotton disease including seedling deaths. This study compared two Pima cottons (Gossypium barbadense) in the infection process of FOV4 using a confocal and a scanning electron microscope. Seedlings were grown in a hydroponic system and inoculated with a virulent local FOV4 isolate. As compared with the susceptible Pima S-7, the resistant Pima PHY 841 RF had significantly fewer conidia attached and germinated on the root surface. FOV4 penetration into the root epidermis of PHY 841 RF was delayed until 24 h postinoculation (hpi) as compared with 8 hpi in Pima S-7. In Pima S-7, hyphae progressed to the xylem through the cortex between 5 and 7 days postinoculation. However, hyphae grew much slower in the cortex with no apparent hyphae observed in the xylem of PHY 841 RF. At plant maturity, no FOV4 was detected through fungal isolation and PCR in the stem of PHY 841 RF and its resistance donor parents PHY 800 and Pima S-6, as compared with Pima S-7 and DP 744 with positive results. The results demonstrate that PHY 841 RF is resistant to FOV4, due to delayed infection, reduced fungal growth and reproduction, and prevention of the fungus from invading the xylem.


Subject(s)
Fusarium , Gossypium/microbiology , Plant Diseases/microbiology , Potassium Iodide , Seedlings
10.
Plants (Basel) ; 10(5)2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33926071

ABSTRACT

Early and late leaf spot are two devastating diseases of peanut (Arachis hypogaea L.) worldwide. The development of a fertile, cross-compatible synthetic amphidiploid, TxAG-6 ([A. batizocoi × (A. cardenasii × A. diogoi)]4x), opened novel opportunities for the introgression of wild alleles for disease and pest resistance into commercial cultivars. Twenty-seven interspecific lines selected from prior evaluation of an advanced backcross population were evaluated for resistance to early and late leaf spot, and for yield in two locations in Ghana in 2006 and 2007. Several interspecific lines had early leaf spot scores significantly lower than the susceptible parent, indicating that resistance to leaf spot had been successfully introgressed and retained after three cycles of backcrossing. Time to appearance of early leaf spot symptoms was less in the introgression lines than in susceptible check cultivars, but the opposite was true for late leaf spot. Selected lines from families 43-08, 43-09, 50-04, and 60-02 had significantly reduced leaf spot scores, while lines from families 43-09, 44-10, and 63-06 had high pod yields. One line combined both resistance to leaf spot and high pod yield, and several other useful lines were also identified. Results suggest that it is possible to break linkage drag for low yield that accompanies resistance. However, results also suggest that resistance was diluted in many of the breeding lines, likely a result of the multigenic nature of resistance. Future QTL analysis may be useful to identify alleles for resistance and allow recombination and pyramiding of resistance alleles while reducing linkage drag.

11.
Zootaxa ; 4920(3): zootaxa.4920.3.3, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33756655

ABSTRACT

The species of the Nearctic genus Tritoxa Loew are revised. Seven species of Tritoxa are recognized, including two new species: T. californica sp. nov. (type locality: near Spring Garden, California), T. cuneata Loew, T. decipiens sp. nov. (type locality: near Smithers, British Columbia), T. flexa (Wiedemann), T. incurva Loew, T. pollinosa Cole and T. ra Harriot. One species from California and Nevada based on female specimens remains undescribed. A key to all species is provided, species are illustrated and their distributions mapped. Wing patterns may be used to differentiate among all species, although confident identification of certain sympatric species requires confirmation by examination of male genitalia.


Subject(s)
Diptera , Animals , Female , Male , Wings, Animal
12.
Mol Genet Genomics ; 296(3): 719-729, 2021 May.
Article in English | MEDLINE | ID: mdl-33779828

ABSTRACT

Bacterial blight (BB), caused by Xanthomonas citri pv. malvacearum (Xcm), is a destructive disease to cotton production in many countries. In the U.S., Xcm race 18 is the most virulent and widespread race and can cause serious yield losses. Planting BB-resistant cotton cultivars is the most effective method of controlling this disease. In this study, 335 U.S. Upland cotton accessions were evaluated for resistance to race 18 using artificial inoculations by scratching cotyledons on an individual plant basis in a greenhouse. The analysis of variance detected significant genotypic variation in disease incidence, and 50 accessions were resistant including 38 lines with no symptoms on either cotyledons or true leaves. Many of the resistant lines were developed in the MAR (multi-adversity resistance) breeding program at Texas A&M University, whereas others were developed before race 18 was first reported in the U.S. in 1973, suggesting a broad base of resistance to race 18. A genome-wide association study (GWAS) based on 26,301 single nucleotide polymorphic (SNP) markers detected 11 quantitative trait loci (QTL) anchored by 79 SNPs, including three QTL on each of the three chromosomes A01, A05 and D02, and one QTL on each of D08 and D10. This study has identified a set of obsolete Upland germplasm with resistance to race 18 and specific chromosomal regions delineated by SNPs for resistance. The results will assist in breeding cotton for BB resistance and facilitate further genomic studies in fine mapping resistance genes to enhance the understanding of the genetic basis of BB resistance in cotton.


Subject(s)
Cotton Fiber/microbiology , Gossypium/genetics , Gossypium/microbiology , Xanthomonas/genetics , Chromosome Mapping/methods , Genome-Wide Association Study/methods , Genomics/methods , Genotype , Plant Breeding/methods , Plant Diseases/genetics , Plant Diseases/microbiology , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
13.
New Phytol ; 230(1): 275-289, 2021 04.
Article in English | MEDLINE | ID: mdl-33314087

ABSTRACT

Fusarium wilt caused by the ascomycete fungus Fusarium oxysporum is a devastating disease of many economically important crops. The mechanisms underlying plant responses to F. oxysporum infections remain largely unknown. We demonstrate here that a water-soluble, heat-resistant and nonproteinaceous F. oxysporum cell wall extract (FoCWE) component from multiple F. oxysporum isolates functions as a race-nonspecific elicitor, also termed pathogen-associated molecular pattern (PAMP). FoCWE triggers several demonstrated immune responses, including mitogen-activated protein (MAP) kinase phosphorylation, reactive oxygen species (ROS) burst, ethylene production, and stomatal closure, in cotton and Arabidopsis. Pretreated FoCWE protects cotton seeds against infections by virulent F. oxysporum f. sp. vasinfectum (Fov), and Arabidopsis plants against the virulent bacterium, Pseudomonas syringae, suggesting the potential application of FoCWEs in crop protection. Host-mediated responses to FoCWE do not appear to require LYKs/CERK1, BAK1 or SOBIR1, which are commonly involved in PAMP perception and/or signalling. However, FoCWE responses and Fusarium resistance in cotton partially require two receptor-like proteins, GhRLP20 and GhRLP31. Transcriptome analysis suggests that FoCWE preferentially activates cell wall-mediated defence, and Fov has evolved virulence mechanisms to suppress FoCWE-induced defence. These findings suggest that FoCWE is a classical PAMP that is potentially recognised by a novel pattern-recognition receptor to regulate cotton resistance to Fusarium infections.


Subject(s)
Arabidopsis , Fusarium , Cell Wall , Immunity , Plant Diseases , Plant Extracts
14.
BMC Ecol ; 20(1): 38, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32646406

ABSTRACT

An amendment to this paper has been published and can be accessed via the original article.

15.
J Nematol ; 52: 1-8, 2020.
Article in English | MEDLINE | ID: mdl-32726068

ABSTRACT

Small plot cotton cultivar trials (12 trials) were conducted from 2016 to 2019 in fields infested with Meloidogyne incognita. Entries in these trials included commercial cultivars with partial and high resistance to M. incognita, as well as cultivars with no known resistance. Different resistant groups were created based on different cotton seed companies and their descriptions of the M. incognita resistant cultivars. Groups were none (susceptible); partial resistance found in Stoneville or Fibermax cultivars (PR-FM/ST); partial resistance found in PhytoGen cultivars (PR-PHY); resistance (unknown gene(s)) in Deltapine cultivars (NR-DP); and highly resistant cultivars homozygous for RK1 and RK2 resistant genes in PhytoGen cultivars (HR-PHY). The highest lint yields using a mixed model analysis were found in the PR-FM/ST (1,396 kg lint/ha), HR-PHY (1,327 kg lint/ha), and PR-PHY (1,314 kg lint/ha) groups. Yield for NR-DP (1,234 kg lint/ha) was not different (p > 0.05) than yield for susceptible cultivars (1,243 kg lint/ha). If the older resistant cultivars from Deltapine and PhytoGen (those with only Roundup Ready® herbicide technology) were removed from the analysis, then HR-PHY yields increased by 133 kg of lint/ha to 1,460 kg lint/ha and NR-DP yields remained approximately unchanged (1,227 kg lint/ha). Newer HR-PHY had much improved yield over the first HR-PHY cultivars. Newer HR-PHY averaged 17% higher yield than the susceptible group. LOG10 (M. incognita eggs/500 cm3 soil + 1) were highest for the susceptible cultivars (3.2), followed by PR-FM/ST (2.6), NR-DP (2.4), PR-PHY (2.1), and lowest with HR-PHY (1.4). The newer HR-PHY cultivars (those with ENLIST® herbicide technology) combine excellent yields (17% higher than susceptible cultivars) with high (96%) suppression of M. incognita.Small plot cotton cultivar trials (12 trials) were conducted from 2016 to 2019 in fields infested with Meloidogyne incognita. Entries in these trials included commercial cultivars with partial and high resistance to M. incognita, as well as cultivars with no known resistance. Different resistant groups were created based on different cotton seed companies and their descriptions of the M. incognita resistant cultivars. Groups were none (susceptible); partial resistance found in Stoneville or Fibermax cultivars (PR-FM/ST); partial resistance found in PhytoGen cultivars (PR-PHY); resistance (unknown gene(s)) in Deltapine cultivars (NR-DP); and highly resistant cultivars homozygous for RK1 and RK2 resistant genes in PhytoGen cultivars (HR-PHY). The highest lint yields using a mixed model analysis were found in the PR-FM/ST (1,396 kg lint/ha), HR-PHY (1,327 kg lint/ha), and PR-PHY (1,314 kg lint/ha) groups. Yield for NR-DP (1,234 kg lint/ha) was not different (p > 0.05) than yield for susceptible cultivars (1,243 kg lint/ha). If the older resistant cultivars from Deltapine and PhytoGen (those with only Roundup Ready® herbicide technology) were removed from the analysis, then HR-PHY yields increased by 133 kg of lint/ha to 1,460 kg lint/ha and NR-DP yields remained approximately unchanged (1,227 kg lint/ha). Newer HR-PHY had much improved yield over the first HR-PHY cultivars. Newer HR-PHY averaged 17% higher yield than the susceptible group. LOG10 (M. incognita eggs/500 cm3 soil + 1) were highest for the susceptible cultivars (3.2), followed by PR-FM/ST (2.6), NR-DP (2.4), PR-PHY (2.1), and lowest with HR-PHY (1.4). The newer HR-PHY cultivars (those with ENLIST® herbicide technology) combine excellent yields (17% higher than susceptible cultivars) with high (96%) suppression of M. incognita.

16.
Plants (Basel) ; 9(7)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32646004

ABSTRACT

Verticillium wilt, caused by Verticillium dahliae Kleb., leads to significant losses in cotton yield and fiber quality worldwide. To investigate Verticillium wilt impact on photosynthesis rate, yield, and fiber quality, six upland cotton genotypes, namely Verticillium susceptible (DP 1612 B2XF) and partially resistant (FM 2484B2F) commercial cultivars and four breeding lines, were grown to maturity under greenhouse conditions in soil either infested or not infested with V. dahliae microsclerotia. Photosynthetic rate, lint, and seed yield were all higher (p < 0.05) for FM 2484B2F than DP 1612 B2XF when infected with V. dahliae. When comparing healthy (H) to Verticillium wilt (VW) affected plants, fiber properties were greatly impacted. Micronaire decreased from 5.0 (H) to 3.6 (VW) with DP 1612 B2XF and 4.4 (H) to 4.1 (VW) with FM 2484B2F. The maturity ratio decreased from 0.90 (H) to 0.83 (VW) for DP 1612 B2XF and was unchanged for FM 2484B2F (0.90). Fiber properties such as short fiber content, nep count, fineness, and immature fiber content were also significantly affected under Verticillium wilt pressure. With Verticillium wilt affected plants, lines 16-13-601V and 17-17-206V performed similarly to FM 2484B2F for photosynthetic rate, yield, and all fiber properties measured. When selecting for improved cultivars in the presence of Verticillium wilt, it is important to select for relatively unchanged fiber properties under disease pressure in addition to reduced disease severity and increased yield.

17.
BMC Ecol ; 19(1): 53, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31861996

ABSTRACT

BACKGROUND: Pleistocene glaciations have had an important impact on the species distribution and community composition of the North American biota. Species survived these glacial cycles south of the ice sheets and/or in other refugia, such as Beringia. In this study, we assessed, using mitochondrial DNA from three Diptera species, whether flies currently found in Beringian grasslands (1) survived glaciation as disjunct populations in Beringia and in the southern refugium; (2) dispersed northward postglacially from the southern refugium; or (3) arose by a combination of the two. Samples were collected in grasslands in western Canada: Prairies in Alberta and Manitoba; the Peace River region (Alberta); and the southern Yukon Territory. We sequenced two gene regions (658 bp of cytochrome c oxidase subunit I, 510 bp of cytochrome b) from three species of higher Diptera: one with a continuous distribution across grassland regions, and two with disjunct populations between the regions. We used a Bayesian approach to determine population groupings without a priori assumptions and performed analysis of molecular variance (AMOVA) and exact tests of population differentiation (ETPD) to examine their validity. Molecular dating was used to establish divergence times. RESULTS: Two geographically structured populations were found for all species: a southern Prairie and Peace River population, and a Yukon population. Although AMOVA did not show significant differentiation between populations, ETPD did. Divergence time between Yukon and southern populations predated the Holocene for two species; the species with an ambiguous divergence time had high haplotype diversity, which could suggest survival in a Beringian refugium. CONCLUSIONS: Populations of Diptera in Yukon grasslands could have persisted in steppe habitats in Beringia through Pleistocene glaciations. Current populations in the region appear to be a mix of Beringian relict populations and, to a lesser extent, postglacial dispersal northward from southern prairie grasslands.


Subject(s)
Diptera , Alberta , Animals , Bayes Theorem , DNA, Mitochondrial , Genetic Variation , Haplotypes , Manitoba , North America , Phylogeny , Phylogeography
18.
Zootaxa ; 4670(1): zootaxa.4670.1.1, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31716602

ABSTRACT

Rhamphomyia of the Canadian Arctic Archipelago, Greenland and Iceland, comprising 23 species, including five new species, are revised: R. (Ctenempis) albopilosa Coquillett, R. (Dasyrhamphomyia) erinacioides Malloch, R. (Dasyrhamphomyia) hovgaardii Holmgren, R. (Dasyrhamphomyia) leptidiformis Frey, R. (Dasyrhamphomyia) nigrita Zetterstedt, R. (Eorhamphomyia) shewelli Sinclair, Vajda, Saigusa Shamshev sp. nov., R. (Pararhamphomyia) diversipennis Becker, R. (Pararhamphomyia) filicauda Henriksen Lundbeck, R. (Pararhamphomyia) frigida Sinclair, Vajda, Saigusa Shamshev sp. nov., R. (Pararhamphomyia) helleni Frey, R. (Pararhamphomyia) hilariformis Frey, R. (Pararhamphomyia) hoeli Frey, R. (Pararhamphomyia) kjellmanii Holmgren, R. (Pararhamphomyia) lymaniana Sinclair, Vajda, Saigusa Shamshev sp. nov., R. (Pararhamphomyia) omissinervis Becker, R. (Pararhamphomyia) petervajdai Sinclair, Vajda, Saigusa Shamshev sp. nov., R. (Pararhamphomyia) septentrionalis Sinclair, Vajda, Saigusa Shamshev sp. nov., R. (Pararhamphomyia) simplex Zetterstedt, R. (Pararhamphomyia) ursinella Melander, R. herschelli Malloch, R. hirtula Zetterstedt, R. laevigata Loew, R. setosa Coquillett. The following six new synonyms are proposed: R. calvimontis Cockerell, 1916 and R. wuorentausi Frey, 1922 = R. albopilosa Coquillett, 1900; R. fridolini Frey, 1950 = R. laevigata Loew, 1861; R. hirticula Collin, 1937 = R. setosa Coquillett, 1895; R. uralensis Becker, 1915 = R. kjellmanii Holmgren, 1880; R. zaitzevi Becker, 1915 = R. hovgaardii Holmgren, 1880. Lectotypes are designated for the following species: R. diversipennis Becker, R. filicauda Henriksen Lundbeck, R. helleni Frey, R. herschelli Malloch, R. hirticula Collin, R. hoeli Frey, R. leptidiformis Frey, R. omissinervis Becker, R. setosa Coquillett, R. uralensis Becker, R. wuorentausi Frey, R. zaitzevi Becker. A neotype is designated for R. laevigata Loew. Keys to male and female species of Rhamphomyia and distribution maps of this region are provided. DNA barcode data are presented for 16 species of arctic Rhamphomyia.


Subject(s)
Diptera , Animal Distribution , Animal Structures , Animals , Canada , Female , Greenland , Iceland , Male
19.
Zootaxa ; 4668(3): zootaxa.4668.3.1, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31716615

ABSTRACT

Paraleucopidae Wheeler fam. nov. is proposed for the previously unplaced New World genera Paraleucopis Malloch, Mallochianamyia Santos-Neto and Schizostomyia Malloch and undescribed Australian species. A key to genera of Paraleucopidae is provided. Paraleucopis is revised and includes nine species: P. auripes Wheeler Sinclair sp. nov. (type locality: Andalgala, Argentina); P. bispinosa Wheeler Sinclair sp. nov. (type locality: Socos, Coquimbo, Chile); P. boharti Wheeler Sinclair sp. nov. (type locality: Andalgala, Argentina); P. boydensis Steyskal (type locality: nr. Palm Desert, California, USA); P. corvina Malloch (type species of genus; type locality: New Mexico, USA); P. mexicana Steyskal (type locality: Kino Bay, Mexico); P. nigra Wheeler Sinclair sp. nov. (type locality: Portal, Arizona, USA); P. paraboydensis Wheeler Sinclair sp. nov. (type locality: Willis Palms Oasis, California, USA); P. saguaro Wheeler Sinclair sp. nov. (type locality: Usery Mtn Park, Arizona, USA). A key to the species of Paraleucopis is provided. The distribution of Paraleucopis is disjunct, with six species in the western United States and northwestern Mexico and three species in northern Chile and northern Argentina.                The sister group and superfamilial assignment of the Paraleucopidae cannot be established based on current knowledge although the family has affinities to some families of the Asteioinea sensu J.F. McAlpine. A well-supported hypothesis on the relationships of the families of the Acalyptratae will be required before the sister group relationships of Paraleucopidae can be determined.


Subject(s)
Diptera , Animal Distribution , Animal Structures , Animals , Argentina , Arizona , Australia , Body Size , California , Chile , Mexico , New Mexico , Organ Size
20.
Curr Opin Plant Biol ; 50: 95-103, 2019 08.
Article in English | MEDLINE | ID: mdl-31075542

ABSTRACT

Bacterial blight of cotton, caused by Xanthomonas citri subsp. malvacearum, and Fusarium wilt of cotton, caused by Fusarium oxysporum f. sp. vasinfectum, contribute cotton losses worldwide. Resurgences of these diseases in the United States were reported in recent years. There is a pressing need to understand pathogenicity and host responses to the pathogens and develop effective strategies for disease prevention and management. Here, we discuss the current status of bacterial blight and Fusarium wilt of cotton in the field as well as the knowledge of cotton resistance and susceptibility to these pathogens. In addition, we aim to provide insights into how these diseases are recurring and possible methods to use current technologies for biological control of these pathogens.


Subject(s)
Fusarium , Bacteria , Gossypium , Plant Diseases
SELECTION OF CITATIONS
SEARCH DETAIL
...