Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Nano Lett ; 22(9): 3525-3531, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35472261

ABSTRACT

Actively tunable optical materials integrated with engineered subwavelength structures could enable novel optoelectronic devices, including reconfigurable light sources and tunable on-chip spectral filters. The phase-change material vanadium dioxide (VO2) provides a promising solid-state solution for dynamic tuning; however, previous demonstrations have been limited to thicker and often rough VO2 films or require a lattice-matched substrate for growth. Here, sub-10-nm-thick VO2 films are realized by atomic layer deposition (ALD) and integrated with plasmonic nanogap cavities to demonstrate tunable, spectrally selective absorption across 1200 nm in the near-infrared (NIR). Upon inducing the phase transition via heating, the absorption resonance is blue-shifted by as much as 60 nm. This process is reversible upon cooling and repeatable over more than ten temperature cycles. Dynamic, ultrathin VO2 films deposited by ALD, as demonstrated here, open up new potential architectures and applications where VO2 can be utilized to provide reconfigurability including three-dimensional, flexible and large-area structures.

3.
Sci Adv ; 7(8)2021 Feb.
Article in English | MEDLINE | ID: mdl-33608281

ABSTRACT

Creating seamless heterostructures that exhibit the quantum Hall effect and superconductivity is highly desirable for future electronics based on topological quantum computing. However, the two topologically robust electronic phases are typically incompatible owing to conflicting magnetic field requirements. Combined advances in the epitaxial growth of a nitride superconductor with a high critical temperature and a subsequent nitride semiconductor heterostructure of metal polarity enable the observation of clean integer quantum Hall effect in the polarization-induced two-dimensional (2D) electron gas of the high-electron mobility transistor. Through individual magnetotransport measurements of the spatially separated GaN 2D electron gas and superconducting NbN layers, we find a small window of magnetic fields and temperatures in which the epitaxial layers retain their respective quantum Hall and superconducting properties. Its analysis indicates that in epitaxial nitride superconductor/semiconductor heterostructures, this window can be significantly expanded, creating an industrially viable platform for robust quantum devices that exploit topologically protected transport.

4.
Sci Rep ; 10(1): 13964, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32811889

ABSTRACT

We present an experimental demonstration of passive, dynamic thermal regulation in a solid-state system with temperature-dependent thermal emissivity switching. We achieve this effect using a multilayered device, comprised of a vanadium dioxide (VO2) thin film on a silicon substrate with a gold back reflector. We experimentally characterize the optical properties of the VO2 film and use the results to optimize device design. Using a calibrated, transient calorimetry experiment we directly measure the temperature fluctuations arising from a time-varying heat load. Under laboratory conditions, we find that the device regulates temperature better than a constant emissivity sample. We use the experimental results to validate our thermal model, which can be used to predict device performance under the conditions of outer space. In this limit, thermal fluctuations are halved with reference to a constant-emissivity sample.

5.
Nano Lett ; 20(6): 4638-4644, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32421337

ABSTRACT

Optical limiting is desirable or necessary in a variety of applications that employ high-power light sources or sensitive photodetectors. However, the most prevalent methods compromise between on-state transmission and turndown ratio or rely on narrow transmission windows. We demonstrate that a metasurface-based architecture incorporating phase-change materials enables both high and broadband on-state transmission (-4.8 dB) while also providing a large turndown ratio (25.2 dB). Additionally, this design can be extended for broadband multiwavelength limiting due to the high off-resonance transmittance and readily scalable resonant wavelength. Furthermore, our choice of active material allows for protection in ultrafast laser environments due to the speed of the phase transition. These benefits offer a strong alternative to state-of-the-art optical limiters in technologies ranging from sensor protection to protective eyewear.

6.
Nat Commun ; 10(1): 1682, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30975986

ABSTRACT

Phonon polaritons, hybrid light-matter quasiparticles resulting from strong coupling of the electromagnetic field with the lattice vibrations of polar crystals are a promising platform for mid-infrared photonics but for the moment there has been no proposal allowing for their electrical pumping. Electrical currents in fact mainly generate longitudinal optical phonons, while only transverse ones participate in the creation of phonon polaritons. We demonstrate how to exploit long-cell polytypes of silicon carbide to achieve strong coupling between transverse phonon polaritons and zone-folded longitudinal optical phonons. We develop a microscopic theory predicting the existence of the resulting hybrid longitudinal-transverse excitations. We then provide an experimental observation by tuning the resonance of a nanopillar array through the folded longitudinal optical mode, obtaining a clear spectral anti-crossing. The hybridisation of phonon polaritons with longitudinal phonons could represent an important step toward the development of phonon polariton-based electrically pumped mid-infrared emitters.

7.
Opt Express ; 26(16): 20718-20725, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30119377

ABSTRACT

Plasmonic structures can precisely localize electromagnetic energy to deep subwavelength regions resulting in significant field enhancement useful for efficient on-chip nonlinear generation. However, the origin of large nonlinear enhancements observed in plasmonic nanogap structures consisting of both dielectrics and metals is not fully understood. For the first time, here we probe the third harmonic generation (THG) from a variety of dielectric materials embedded in a nanogap plasmonic cavity. From comprehensive spectral analysis of the THG signal, we conclude that the nonlinear response results primarily from the dielectric spacer layer itself as opposed to the surrounding metal. We achieved a maximum enhancement factor of more than six orders of magnitude compared to a bare gold film, which represents a nonlinear conversion efficiency of 8.78 × 10-4%. We expect this new insight into the nonlinear response in ultrathin gaps between metals to be promising for on-chip nonlinear devices such as ultrafast optical switching and entangled photon sources.

8.
J Vis Exp ; (135)2018 05 23.
Article in English | MEDLINE | ID: mdl-29889197

ABSTRACT

Vanadium dioxide is a material that has a reversible metal-insulator phase change near 68 °C. To grow VO2 on a wide variety of substrates, with wafer-scale uniformity and angstrom level control of thickness, the method of atomic-layer deposition was chosen. This ALD process enables high-quality, low-temperature (≤150 °C) growth of ultrathin films (100-1000 Å) of VO2. For this demonstration, the VO2 films were grown on sapphire substrates. This low temperature growth technique produces mostly amorphous VO2 films. A subsequent anneal in an ultra-high vacuum chamber with a pressure of 7x10-4 Pa of ultra-high purity (99.999%) oxygen produced oriented, polycrystalline VO2 films. The crystallinity, phase, and strain of the VO2 were determined by Raman spectroscopy and X-ray diffraction, while the stoichiometry and impurity levels were determined by X-ray photoelectron spectroscopy, and finally the morphology was determined by atomic force microscopy. These data demonstrate the high-quality of the films grown by this technique. A model was created to fit to the data for VO2 in its metallic and insulating phases in the near infrared spectral region. The permittivity and refractive index of the ALD VO2 agreed well with the other fabrication methods in its insulating phase, but showed a difference in its metallic state. Finally, the analysis of the films' optical properties enabled the creation of a wavelength- and temperature-dependent model of the complex optical refractive index for developing VO2 as a tunable refractive index material.


Subject(s)
Oxides/chemistry , Spectrum Analysis, Raman/methods , Vanadium Compounds/chemistry , Temperature
9.
Nanoscale ; 7(8): 3694-702, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-25640166

ABSTRACT

Atomically thin two dimensional hexagonal boron nitride (2D h-BN) is one of the key materials in the development of new van der Waals heterostructures due to its outstanding properties including an atomically smooth surface, high thermal conductivity, high mechanical strength, chemical inertness and high electrical resistance. The development of 2D h-BN growth is still in the early stages and largely depends on rapid and accurate characterization of the grown monolayer or few layers h-BN films. This paper demonstrates a new approach to characterizing monolayer h-BN films directly on metal substrates by grazing-incidence infrared reflection absorption spectroscopy (IRRAS). Using h-BN films grown by atmospheric-pressure chemical vapor deposition on Cu and Ni substrates, two new sub-bands are found for the A2u out-of-plane stretching mode. It is shown, using both experimental and computational methods, that the lower-energy sub-band is related to 2D h-BN coupled with substrate, while the higher energy sub-band is related to decoupled (or free-standing) 2D h-BN. It is further shown that this newly-observed fine structure in the A2u mode can be used to assess, quickly and easily, the homogeneity of the h-BN-metal interface and the effects of metal surface contamination on adhesion of the layer.

10.
Nano Lett ; 13(8): 3690-7, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23815389

ABSTRACT

Plasmonics provides great promise for nanophotonic applications. However, the high optical losses inherent in metal-based plasmonic systems have limited progress. Thus, it is critical to identify alternative low-loss materials. One alternative is polar dielectrics that support surface phonon polariton (SPhP) modes, where the confinement of infrared light is aided by optical phonons. Using fabricated 6H-silicon carbide nanopillar antenna arrays, we report on the observation of subdiffraction, localized SPhP resonances. They exhibit a dipolar resonance transverse to the nanopillar axis and a monopolar resonance associated with the longitudinal axis dependent upon the SiC substrate. Both exhibit exceptionally narrow linewidths (7-24 cm(-1)), with quality factors of 40-135, which exceed the theoretical limit of plasmonic systems, with extreme subwavelength confinement of (λ(res)3/V(eff))1/3 = 50-200. Under certain conditions, the modes are Raman-active, enabling their study in the visible spectral range. These observations promise to reinvigorate research in SPhP phenomena and their use for nanophotonic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...