Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 232
Filter
1.
Front Neuroinform ; 18: 1415085, 2024.
Article in English | MEDLINE | ID: mdl-38933144

ABSTRACT

Background: Quantitative maps obtained with diffusion weighted (DW) imaging, such as fractional anisotropy (FA) -calculated by fitting the diffusion tensor (DT) model to the data,-are very useful to study neurological diseases. To fit this map accurately, acquisition times of the order of several minutes are needed because many noncollinear DW volumes must be acquired to reduce directional biases. Deep learning (DL) can be used to reduce acquisition times by reducing the number of DW volumes. We already developed a DL network named "one-minute FA," which uses 10 DW volumes to obtain FA maps, maintaining the same characteristics and clinical sensitivity of the FA maps calculated with the standard method using more volumes. Recent publications have indicated that it is possible to train DL networks and obtain FA maps even with 4 DW input volumes, far less than the minimum number of directions for the mathematical estimation of the DT. Methods: Here we investigated the impact of reducing the number of DW input volumes to 4 or 7, and evaluated the performance and clinical sensitivity of the corresponding DL networks trained to calculate FA, while comparing results also with those using our one-minute FA. Each network training was performed on the human connectome project open-access dataset that has a high resolution and many DW volumes, used to fit a ground truth FA. To evaluate the generalizability of each network, they were tested on two external clinical datasets, not seen during training, and acquired on different scanners with different protocols, as previously done. Results: Using 4 or 7 DW volumes, it was possible to train DL networks to obtain FA maps with the same range of values as ground truth - map, only when using HCP test data; pathological sensitivity was lost when tested using the external clinical datasets: indeed in both cases, no consistent differences were found between patient groups. On the contrary, our "one-minute FA" did not suffer from the same problem. Conclusion: When developing DL networks for reduced acquisition times, the ability to generalize and to generate quantitative biomarkers that provide clinical sensitivity must be addressed.

2.
Eur J Neurol ; 31(7): e16297, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38713645

ABSTRACT

BACKGROUND AND PURPOSE: Simultaneous assessment of neurodegeneration in both the cervical cord and brain across multiple centres can enhance the effectiveness of clinical trials. Thus, this study aims to simultaneously assess microstructural changes in the cervical cord and brain above the stenosis in degenerative cervical myelopathy (DCM) using quantitative magnetic resonance imaging (MRI) in a multicentre study. METHODS: We applied voxelwise analysis with a probabilistic brain/spinal cord template embedded in statistical parametric mappin (SPM-BSC) to process multi parametric mapping (MPM) including effective transverse relaxation rate (R2*), longitudinal relaxation rate (R1), and magnetization transfer (MT), which are indirectly sensitive to iron and myelin content. Regression analysis was conducted to establish associations between neurodegeneration and clinical impairment. Thirty-eight DCM patients (mean age ± SD = 58.45 ± 11.47 years) and 38 healthy controls (mean age ± SD = 41.18 ± 12.75 years) were recruited at University Hospital Balgrist, Switzerland and Toronto Western Hospital, Canada. RESULTS: Remote atrophy was observed in the cervical cord (p = 0.002) and in the left thalamus (0.026) of the DCM group. R1 was decreased in the periaqueductal grey matter (p = 0.014), thalamus (p = 0.001), corpus callosum (p = 0.0001), and cranial corticospinal tract (p = 0.03). R2* was increased in the primary somatosensory cortices (p = 0.008). Sensory impairments were associated with increased iron-sensitive R2* in the thalamus and periaqueductal grey matter in DCM. CONCLUSIONS: Simultaneous assessment of the spinal cord and brain revealed DCM-induced demyelination, iron deposition, and atrophy. The extent of remote neurodegeneration was associated with sensory impairment, highlighting the intricate and expansive nature of microstructural neurodegeneration in DCM, reaching beyond the stenosis level.


Subject(s)
Cervical Cord , Magnetic Resonance Imaging , Humans , Male , Female , Middle Aged , Aged , Adult , Cervical Cord/diagnostic imaging , Cervical Cord/pathology , Brain/diagnostic imaging , Brain/pathology , Spinal Cord Diseases/diagnostic imaging , Spinal Cord Diseases/pathology , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/pathology
3.
Magn Reson Med ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725240

ABSTRACT

PURPOSE: A method is proposed to quantify cerebral blood volume ( v b $$ {v}_b $$ ) and intravascular water residence time ( τ b $$ {\tau}_b $$ ) using MR fingerprinting (MRF), applied using a spoiled gradient echo sequence without the need for contrast agent. METHODS: An in silico study optimized an acquisition protocol to maximize the sensitivity of the measurement to v b $$ {v}_b $$ and τ b $$ {\tau}_b $$ changes. Its accuracy in the presence of variations in T 1 , t $$ {\mathrm{T}}_{1,t} $$ , T 1 , b $$ {\mathrm{T}}_{1,b} $$ , and B 1 $$ {\mathrm{B}}_1 $$ was evaluated. The optimized protocol (scan time of 19 min) was then tested in a exploratory healthy volunteer study (10 volunteers, mean age 24 ± $$ \pm $$ 3, six males) at 3 T with a repeat scan taken after repositioning to allow estimation of repeatability. RESULTS: Simulations show that assuming literature values for T 1 , b $$ {\mathrm{T}}_{1,b} $$ and T 1 , t $$ {\mathrm{T}}_{1,t} $$ , no variation in B 1 $$ {\mathrm{B}}_1 $$ , while fitting only v b $$ {v}_b $$ and τ b $$ {\tau}_b $$ , leads to large errors in quantification of v b $$ {v}_b $$ and τ b $$ {\tau}_b $$ , regardless of noise levels. However, simulations also show that matching T 1 , t $$ {\mathrm{T}}_{1,t} $$ , T 1 , b $$ {\mathrm{T}}_{1,b} $$ , B 1 + $$ {\mathrm{B}}_1^{+} $$ , v b $$ {v}_b $$ and τ b $$ {\tau}_b $$ , simultaneously is feasible at clinically achievable noise levels. Across the healthy volunteers, all parameter quantifications fell within the expected literature range. In addition, the maps show good agreement between hemispheres suggesting physiologically relevant information is being extracted. Expected differences between white and gray matter T 1 , t $$ {\mathrm{T}}_{1,t} $$ (p < 0.0001) and v b $$ {v}_b $$ (p < 0.0001) are observed, T 1 , b $$ {\mathrm{T}}_{1,b} $$ and τ b $$ {\tau}_b $$ show no significant differences, p = 0.4 and p = 0.6, respectively. Moderate to excellent repeatability was seen between repeat scans: mean intra-class correlation coefficient of T 1 , t : 0 . 91 $$ {\mathrm{T}}_{1,t}:0.91 $$ , T 1 , b : 0 . 58 $$ {\mathrm{T}}_{1,b}:0.58 $$ , v b : 0 . 90 $$ {v}_b:0.90 $$ , and τ b : 0 . 96 $$ {\tau}_b:0.96 $$ . CONCLUSION: We demonstrate that regional simultaneous quantification of v b $$ {v}_b $$ , τ b $$ {\tau}_b $$ , T 1 , b , T 1 , t $$ {\mathrm{T}}_{1,b},{T}_{1,t} $$ , and B 1 + $$ {\mathrm{B}}_1^{+} $$ using MRF is feasible in vivo.

4.
Brain Commun ; 6(3): fcae143, 2024.
Article in English | MEDLINE | ID: mdl-38712323

ABSTRACT

In preclinical models of multiple sclerosis, systemic inflammation has an impact on the compartmentalized inflammatory process within the central nervous system and results in axonal loss. It remains to be shown whether this is the case in humans, specifically whether systemic inflammation contributes to spinal cord or brain atrophy in multiple sclerosis. Hence, an observational longitudinal study was conducted to delineate the relationship between systemic inflammation and atrophy using magnetic resonance imaging: the SIMS (Systemic Inflammation in Multiple Sclerosis) study. Systemic inflammation and progression were assessed in people with progressive multiple sclerosis (n = 50) over two and a half years. Eligibility criteria included: (i) primary or secondary progressive multiple sclerosis; (ii) age ≤ 70; and (iii) Expanded Disability Status Scale ≤ 6.5. First morning urine was collected weekly to quantify systemic inflammation by measuring the urinary neopterin-to-creatinine ratio using a validated ultra-performance liquid chromatography mass spectrometry technique. The urinary neopterin-to-creatinine ratio temporal profile was characterized by short-term responses overlaid on a background level of inflammation, so these two distinct processes were considered as separate variables: background inflammation and inflammatory response. Participants underwent MRI at the start and end of the study, to measure cervical spinal cord and brain atrophy. Brain and cervical cord atrophy occurred on the study, but the most striking change was seen in the cervical spinal cord, in keeping with the corticospinal tract involvement that is typical of progressive disease. Systemic inflammation predicted cervical cord atrophy. An association with brain atrophy was not observed in this cohort. A time lag between systemic inflammation and cord atrophy was evident, suggesting but not proving causation. The association of the inflammatory response with cord atrophy depended on the level of background inflammation, in keeping with experimental data in preclinical models where the effects of a systemic inflammatory challenge on tissue injury depended on prior exposure to inflammation. A higher inflammatory response was associated with accelerated cord atrophy in the presence of background systemic inflammation below the median for the study population. Higher background inflammation, while associated with cervical cord atrophy itself, subdued the association of the inflammatory response with cord atrophy. Findings were robust to sensitivity analyses adjusting for potential confounders and excluding cases with new lesion formation. In conclusion, systemic inflammation associates with, and precedes, multiple sclerosis progression. Further work is needed to prove causation since targeting systemic inflammation may offer novel treatment strategies for slowing neurodegeneration in multiple sclerosis.

5.
Mult Scler ; 30(7): 800-811, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38751221

ABSTRACT

BACKGROUND: Conventional magnetic resonance imaging (MRI) does not account for all disability in multiple sclerosis. OBJECTIVE: The objective was to assess the ability of graph metrics from diffusion-based structural connectomes to explain motor function beyond conventional MRI in early demyelinating clinically isolated syndrome (CIS). METHODS: A total of 73 people with CIS underwent conventional MRI, diffusion-weighted imaging and clinical assessment within 3 months from onset. A total of 28 healthy controls underwent MRI. Structural connectomes were produced. Differences between patients and controls were explored; clinical associations were assessed in patients. Linear regression models were compared to establish relevance of graph metrics over conventional MRI. RESULTS: Local efficiency (p = 0.045), clustering (p = 0.034) and transitivity (p = 0.036) were reduced in patients. Higher assortativity was associated with higher Expanded Disability Status Scale (EDSS) (ß = 74.9, p = 0.026) scores. Faster timed 25-foot walk (T25FW) was associated with higher assortativity (ß = 5.39, p = 0.026), local efficiency (ß = 27.1, p = 0.041) and clustering (ß = 36.1, p = 0.032) and lower small-worldness (ß = -3.27, p = 0.015). Adding graph metrics to conventional MRI improved EDSS (p = 0.045, ΔR2 = 4) and T25FW (p < 0.001, ΔR2 = 13.6) prediction. CONCLUSION: Graph metrics are relevant early in demyelination. They show differences between patients and controls and have relationships with clinical outcomes. Segregation (local efficiency, clustering, transitivity) was particularly relevant. Combining graph metrics with conventional MRI better explained disability.


Subject(s)
Connectome , Demyelinating Diseases , Humans , Male , Female , Adult , Demyelinating Diseases/diagnostic imaging , Demyelinating Diseases/physiopathology , Middle Aged , Diffusion Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/physiopathology , Disability Evaluation , Magnetic Resonance Imaging , Young Adult , Brain/diagnostic imaging , Brain/physiopathology , Brain/pathology
6.
bioRxiv ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38746371

ABSTRACT

Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controlling for sources of biological variation such as subject's sex and age. However, corrections for body size (i.e. height and weight) are mostly lacking in clinical neuroimaging designs. This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 healthy human adults (age 30.1±6.6 years old, 125 females). We show that body height correlated strongly or moderately with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44≤r≤0.62). In comparison, age correlated weakly with cortical GM volume, precentral GM volume, and cortical thickness (-0.21≥r≥-0.27). Body weight correlated weakly with magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20≥r≥-0.23). Body weight further correlated weakly with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM (r=-0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlated strongly or moderately with brain volumes (0.39≤r≤0.64), and weakly with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts (-0.22≥r≥-0.25). Linear mixture of sex and age explained 26±10% of data variance in brain volumetry and SC CSA. The amount of explained variance increased at 33±11% when body height was added into the mixture model. Age itself explained only 2±2% of such variance. In conclusion, body size is a significant biological variable. Along with sex and age, body size should therefore be included as a mandatory variable in the design of clinical neuroimaging studies examining SC and brain structure.

7.
BMJ Open ; 14(3): e079027, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38471681

ABSTRACT

INTRODUCTION: Obesity increases the risk of morbidity and mortality. A major driver has been the increased availability of ultra-processed food (UPF), now the main UK dietary energy source. The UK Eatwell Guide (EWG) provides public guidance for a healthy balanced diet but offers no UPF guidance. Whether a healthy diet can largely consist of UPFs is unclear. No study has assessed whether the health impact of adhering to dietary guidelines depends on food processing. Furthermore, our study will assess the impact of a 6-month behavioural support programme aimed at reducing UPF intake in people with overweight/obesity and high UPF intakes. METHODS AND ANALYSIS: UPDATE is a 2×2 cross-over randomised controlled trial with a 6-month behavioural intervention. Fifty-five adults aged ≥18, with overweight/obesity (≥25 to <40 kg/m2), and ≥50% of habitual energy intake from UPFs will receive an 8-week UPF diet and an 8-week minimally processed food (MPF) diet delivered to their home, both following EWG recommendations, in a random order, with a 4-week washout period. All food/drink will be provided. Participants will then receive 6 months of behavioural support to reduce UPF intake. The primary outcome is the difference in weight change between UPF and MPF diets from baseline to week 8. Secondary outcomes include changes in diet, waist circumference, body composition, heart rate, blood pressure, cardiometabolic risk factors, appetite regulation, sleep quality, physical activity levels, physical function/strength, well-being and aspects of behaviour change/eating behaviour at 8 weeks between UPF/MPF diets, and at 6-month follow-up. Quantitative assessment of changes in brain MRI functional resting-state connectivity between UPF/MPF diets, and qualitative analysis of the behavioural intervention for feasibility and acceptability will be undertaken. ETHICS AND DISSEMINATION: Sheffield Research Ethics Committee approved the trial (22/YH/0281). Peer-reviewed journals, conferences, PhD thesis and lay media will report results. TRIAL REGISTRATION NUMBER: NCT05627570.


Subject(s)
Obesity , Overweight , Adult , Humans , Diet , Energy Intake , United Kingdom , Randomized Controlled Trials as Topic
8.
Mult Scler ; 30(4-5): 516-534, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38372019

ABSTRACT

BACKGROUND: We assessed the ability of a brain-and-cord-matched quantitative magnetic resonance imaging (qMRI) protocol to differentiate patients with progressive multiple sclerosis (PMS) from controls, in terms of normal-appearing (NA) tissue abnormalities, and explain disability. METHODS: A total of 27 patients and 16 controls were assessed on the Expanded Disability Status Scale (EDSS), 25-foot timed walk (TWT), 9-hole peg (9HPT) and symbol digit modalities (SDMT) tests. All underwent 3T brain and (C2-C3) cord structural imaging and qMRI (relaxometry, quantitative magnetisation transfer, multi-shell diffusion-weighted imaging), using a fast brain-and-cord-matched protocol with brain-and-cord-unified imaging readouts. Lesion and NA-tissue volumes and qMRI metrics reflecting demyelination and axonal loss were obtained. Random forest analyses identified the most relevant volumetric/qMRI measures to clinical outcomes. Confounder-adjusted linear regression estimated the actual MRI-clinical associations. RESULTS: Several qMRI/volumetric differences between patients and controls were observed (p < 0.01). Higher NA-deep grey matter quantitative-T1 (EDSS: beta = 7.96, p = 0.006; 9HPT: beta = -0.09, p = 0.004), higher NA-white matter orientation dispersion index (TWT: beta = -3.21, p = 0.005; SDMT: beta = -847.10, p < 0.001), lower whole-cord bound pool fraction (9HPT: beta = 0.79, p = 0.001) and higher NA-cortical grey matter quantitative-T1 (SDMT = -94.31, p < 0.001) emerged as particularly relevant predictors of greater disability. CONCLUSION: Fast brain-and-cord-matched qMRI protocols are feasible and identify demyelination - combined with other mechanisms - as key for disability accumulation in PMS.


Subject(s)
Cervical Cord , Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Humans , Cervical Cord/pathology , Multiple Sclerosis/pathology , Brain/pathology , Magnetic Resonance Imaging/methods , Multiple Sclerosis, Chronic Progressive/pathology , Gray Matter/pathology
9.
J Neuroophthalmol ; 44(1): 112-118, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37967050

ABSTRACT

BACKGROUND: Visual snow syndrome (VSS) is associated with functional connectivity (FC) dysregulation of visual networks (VNs). We hypothesized that mindfulness-based cognitive therapy, customized for visual symptoms (MBCT-vision), can treat VSS and modulate dysfunctional VNs. METHODS: An open-label feasibility study for an 8-week MBCT-vision treatment program was conducted. Primary (symptom severity; impact on daily life) and secondary (WHO-5; CORE-10) outcomes at Week 9 and Week 20 were compared with baseline. Secondary MRI outcomes in a subcohort compared resting-state functional and diffusion MRI between baseline and Week 20. RESULTS: Twenty-one participants (14 male participants, median 30 years, range 22-56 years) recruited from January 2020 to October 2021. Two (9.5%) dropped out. Self-rated symptom severity (0-10) improved: baseline (median [interquartile range (IQR)] 7 [6-8]) vs Week 9 (5.5 [3-7], P = 0.015) and Week 20 (4 [3-6], P < 0.001), respectively. Self-rated impact of symptoms on daily life (0-10) improved: baseline (6 [5-8]) vs Week 9 (4 [2-5], P = 0.003) and Week 20 (2 [1-3], P < 0.001), respectively. WHO-5 Wellbeing (0-100) improved: baseline (median [IQR] 52 [36-56]) vs Week 9 (median 64 [47-80], P = 0.001) and Week 20 (68 [48-76], P < 0.001), respectively. CORE-10 Distress (0-40) improved: baseline (15 [12-20]) vs Week 9 (12.5 [11-16.5], P = 0.003) and Week 20 (11 [10-14], P = 0.003), respectively. Within-subject fMRI analysis found reductions between baseline and Week 20, within VN-related FC in the i) left lateral occipital cortex (size = 82 mL, familywise error [FWE]-corrected P value = 0.006) and ii) left cerebellar lobules VIIb/VIII (size = 65 mL, FWE-corrected P value = 0.02), and increases within VN-related FC in the precuneus/posterior cingulate cortex (size = 69 mL, cluster-level FWE-corrected P value = 0.02). CONCLUSIONS: MBCT-vision was a feasible treatment for VSS, improved symptoms and modulated FC of VNs. This study also showed proof-of-concept for intensive mindfulness interventions in the treatment of neurological conditions.


Subject(s)
Cognitive Behavioral Therapy , Mindfulness , Perceptual Disorders , Vision Disorders , Humans , Male , Feasibility Studies , Magnetic Resonance Imaging , Treatment Outcome
10.
Eur J Neurol ; 31(1): e16092, 2024 01.
Article in English | MEDLINE | ID: mdl-37823722

ABSTRACT

BACKGROUND AND PURPOSE: Newly appearing lesions in multiple sclerosis (MS) may evolve into chronically active, slowly expanding lesions (SELs), leading to sustained disability progression. The aim of this study was to evaluate the incidence of newly appearing lesions developing into SELs, and their correlation to clinical evolution and treatment. METHODS: A retrospective analysis of a fingolimod trial in primary progressive MS (PPMS; INFORMS, NCT00731692) was undertaken. Data were available from 324 patients with magnetic resonance imaging scans up to 3 years after screening. New lesions at year 1 were identified with convolutional neural networks, and SELs obtained through a deformation-based method. Clinical disability was assessed annually by Expanded Disability Status Scale (EDSS), Nine-Hole Peg Test, Timed 25-Foot Walk, and Paced Auditory Serial Addition Test. Linear, logistic, and mixed-effect models were used to assess the relationship between the Jacobian expansion in new lesions and SELs, disability scores, and treatment status. RESULTS: One hundred seventy patients had ≥1 new lesions at year 1 and had a higher lesion count at screening compared to patients with no new lesions (median = 27 vs. 22, p = 0.007). Among the new lesions (median = 2 per patient), 37% evolved into definite or possible SELs. Higher SEL volume and count were associated with EDSS worsening and confirmed disability progression. Treated patients had lower volume and count of definite SELs (ß = -0.04, 95% confidence interval [CI] = -0.07 to -0.01, p = 0.015; ß = -0.36, 95% CI = -0.67 to -0.06, p = 0.019, respectively). CONCLUSIONS: Incident chronic active lesions are common in PPMS, and fingolimod treatment can reduce their number.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Humans , Multiple Sclerosis/drug therapy , Multiple Sclerosis/epidemiology , Multiple Sclerosis/pathology , Fingolimod Hydrochloride/therapeutic use , Retrospective Studies , Incidence , Magnetic Resonance Imaging , Multiple Sclerosis, Chronic Progressive/drug therapy , Multiple Sclerosis, Chronic Progressive/epidemiology
11.
Magn Reson Med ; 91(1): 325-336, 2024 01.
Article in English | MEDLINE | ID: mdl-37799019

ABSTRACT

PURPOSE: Sodium MRI can be used to quantify tissue sodium concentration (TSC) in vivo; however, UTE sequences are required to capture the rapidly decaying signal. 2D MRI enables high in-plane resolution but typically has long TEs. Half-sinc excitation may enable UTE; however, twice as many readouts are necessary. Scan time can be minimized by reducing the number of signal averages (NSAs), but at a cost to SNR. We propose using compressed sensing (CS) to accelerate 2D half-sinc acquisitions while maintaining SNR and TSC. METHODS: Ex vivo and in vivo TSC were compared between 2D spiral sequences with full-sinc (TE = 0.73 ms, scan time ≈ 5 min) and half-sinc excitation (TE = 0.23 ms, scan time ≈ 10 min), with 150 NSAs. Ex vivo, these were compared to a reference 3D sequence (TE = 0.22 ms, scan time ≈ 24 min). To investigate shortening 2D scan times, half-sinc data was retrospectively reconstructed with fewer NSAs, comparing a nonuniform fast Fourier transform to CS. Resultant TSC and image quality were compared to reference 150 NSAs nonuniform fast Fourier transform images. RESULTS: TSC was significantly higher from half-sinc than from full-sinc acquisitions, ex vivo and in vivo. Ex vivo, half-sinc data more closely matched the reference 3D sequence, indicating improved accuracy. In silico modeling confirmed this was due to shorter TEs minimizing bias caused by relaxation differences between phantoms and tissue. CS was successfully applied to in vivo, half-sinc data, maintaining TSC and image quality (estimated SNR, edge sharpness, and qualitative metrics) with ≥50 NSAs. CONCLUSION: 2D sodium MRI with half-sinc excitation and CS was validated, enabling TSC quantification with 2.25 × 2.25 mm2 resolution and scan times of ≤5 mins.


Subject(s)
Magnetic Resonance Imaging , Sodium , Humans , Retrospective Studies , Magnetic Resonance Imaging/methods , Computer Simulation , Fourier Analysis , Imaging, Three-Dimensional/methods
12.
Front Neurol ; 14: 1279616, 2023.
Article in English | MEDLINE | ID: mdl-37965172

ABSTRACT

Introduction: Within Pediatric Cerebellar Ataxias (PCAs), patients with non-progressive ataxia (NonP) surprisingly show postural motor behavior comparable to that of healthy controls, differently to slow-progressive ataxia patients (SlowP). This difference may depend on the building of compensatory strategies of the intact areas in NonP brain network. Methods: Eleven PCAs patients were recruited: five with NonP and six with SlowP. We assessed volumetric and axonal bundles alterations with a multimodal approach to investigate whether eventual spared connectivity between basal ganglia and cerebellum explains the different postural motor behavior of NonP and SlowP patients. Results: Cerebellar lobules were smaller in SlowP patients. NonP patients showed a lower number of streamlines in the cerebello-thalamo-cortical tracts but a generalized higher integrity of white matter tracts connecting the cortex and the basal ganglia with the cerebellum. Discussion: This work reveals that the axonal bundles connecting the cerebellum with basal ganglia and cortex demonstrate a higher integrity in NonP patients. This evidence highlights the importance of the cerebellum-basal ganglia connectivity to explain the different postural motor behavior of NonP and SlowP patients and support the possible compensatory role of basal ganglia in patients with stable cerebellar malformation.

13.
Brain Commun ; 5(5): fcad255, 2023.
Article in English | MEDLINE | ID: mdl-37841069

ABSTRACT

Multiple sclerosis risk has a well-established polygenic component, yet the genetic contribution to disease course and severity remains unclear and difficult to examine. Accurately measuring disease progression requires long-term study of clinical and radiological outcomes with sufficient follow-up duration to confidently confirm disability accrual and multiple sclerosis phenotypes. In this retrospective study, we explore genetic influences on long-term disease course and severity; in a unique cohort of clinically isolated syndrome patients with homogenous 30-year disease duration, deep clinical phenotyping and advanced MRI metrics. Sixty-one clinically isolated syndrome patients [41 female (67%): 20 male (33%)] underwent clinical and MRI assessment at baseline, 1-, 5-, 10-, 14-, 20- and 30-year follow-up (mean age ± standard deviation: 60.9 ± 6.5 years). After 30 years, 29 patients developed relapsing-remitting multiple sclerosis, 15 developed secondary progressive multiple sclerosis and 17 still had a clinically isolated syndrome. Twenty-seven genes were investigated for associations with clinical outcomes [including disease course and Expanded Disability Status Scale (EDSS)] and brain MRI (including white matter lesions, cortical lesions, and brain tissue volumes) at the 30-year follow-up. Genetic associations with changes in EDSS, relapses, white matter lesions and brain atrophy (third ventricular and medullary measurements) over 30 years were assessed using mixed-effects models. HLA-DRB1*1501-positive (n = 26) patients showed faster white matter lesion accrual [+1.96 lesions/year (0.64-3.29), P = 3.8 × 10-3], greater 30-year white matter lesion volumes [+11.60 ml, (5.49-18.29), P = 1.27 × 10-3] and higher annualized relapse rates [+0.06 relapses/year (0.005-0.11), P = 0.031] compared with HLA-DRB1*1501-negative patients (n = 35). PVRL2-positive patients (n = 41) had more cortical lesions (+0.83 [0.08-1.66], P = 0.042), faster EDSS worsening [+0.06 points/year (0.02-0.11), P = 0.010], greater 30-year EDSS [+1.72 (0.49-2.93), P = 0.013; multiple sclerosis cases: +2.60 (1.30-3.87), P = 2.02 × 10-3], and greater risk of secondary progressive multiple sclerosis [odds ratio (OR) = 12.25 (1.15-23.10), P = 0.031] than PVRL2-negative patients (n = 18). In contrast, IRX1-positive (n = 30) patients had preserved 30-year grey matter fraction [+0.76% (0.28-1.29), P = 8.4 × 10-3], lower risk of cortical lesions [OR = 0.22 (0.05-0.99), P = 0.049] and lower 30-year EDSS [-1.35 (-0.87,-3.44), P = 0.026; multiple sclerosis cases: -2.12 (-0.87, -3.44), P = 5.02 × 10-3] than IRX1-negative patients (n = 30). In multiple sclerosis cases, IRX1-positive patients also had slower EDSS worsening [-0.07 points/year (-0.01,-0.13), P = 0.015] and lower risk of secondary progressive multiple sclerosis [OR = 0.19 (0.04-0.92), P = 0.042]. These exploratory findings support diverse genetic influences on pathological mechanisms associated with multiple sclerosis disease course. HLA-DRB1*1501 influenced white matter inflammation and relapses, while IRX1 (protective) and PVRL2 (adverse) were associated with grey matter pathology (cortical lesions and atrophy), long-term disability worsening and the risk of developing secondary progressive multiple sclerosis.

14.
J Magn Reson Imaging ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37787109

ABSTRACT

BACKGROUND: 1 H-magnetic resonance spectroscopy (1 H-MRS) may provide a direct index for the testing of medicines for neuroprotection and drug mechanisms in multiple sclerosis (MS) through measures of total N-acetyl-aspartate (tNAA), total creatine (tCr), myo-inositol (mIns), total-choline (tCho), and glutamate + glutamine (Glx). Neurometabolites may be associated with clinical disability with evidence that baseline neuroaxonal integrity is associated with upper limb function and processing speed in secondary progressive MS (SPMS). PURPOSE: To assess the effect on neurometabolites from three candidate drugs after 96-weeks as seen by 1 H-MRS and their association with clinical disability in SPMS. STUDY-TYPE: Longitudinal. POPULATION: 108 participants with SPMS randomized to receive neuroprotective drugs amiloride [mean age 55.4 (SD 7.4), 61% female], fluoxetine [55.6 (6.6), 71%], riluzole [54.6 (6.3), 68%], or placebo [54.8 (7.9), 67%]. FIELD STRENGTH/SEQUENCE: 3-Tesla. Chemical-shift-imaging 2D-point-resolved-spectroscopy (PRESS), 3DT1. ASSESSMENT: Brain metabolites in normal appearing white matter (NAWM) and gray matter (GM), brain volume, lesion load, nine-hole peg test (9HPT), and paced auditory serial addition test were measured at baseline and at 96-weeks. STATISTICAL TESTS: Paired t-test was used to analyze metabolite changes in the placebo arm over 96-weeks. Metabolite differences between treatment arms and placebo; and associations between baseline metabolites and upper limb function/information processing speed at 96-weeks assessed using multiple linear regression models. P-value<0.05 was considered statistically significant. RESULTS: In the placebo arm, tCho increased in GM (mean difference = -0.32 IU) but decreased in NAWM (mean difference = 0.13 IU). Compared to placebo, in the fluoxetine arm, mIns/tCr was lower (ß = -0.21); in the riluzole arm, GM Glx (ß = -0.25) and Glx/tCr (ß = -0.29) were reduced. Baseline tNAA(ß = 0.22) and tNAA/tCr (ß = 0.23) in NAWM were associated with 9HPT scores at 96-weeks. DATA CONCLUSION: 1 H-MRS demonstrated altered membrane turnover over 96-weeks in the placebo group. It also distinguished changes in neuro-metabolites related to gliosis and glutaminergic transmission, due to fluoxetine and riluzole, respectively. Data show tNAA is a potential marker for upper limb function. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 4.

15.
PLoS Comput Biol ; 19(9): e1011434, 2023 09.
Article in English | MEDLINE | ID: mdl-37656758

ABSTRACT

Mean-field (MF) models are computational formalism used to summarize in a few statistical parameters the salient biophysical properties of an inter-wired neuronal network. Their formalism normally incorporates different types of neurons and synapses along with their topological organization. MFs are crucial to efficiently implement the computational modules of large-scale models of brain function, maintaining the specificity of local cortical microcircuits. While MFs have been generated for the isocortex, they are still missing for other parts of the brain. Here we have designed and simulated a multi-layer MF of the cerebellar microcircuit (including Granule Cells, Golgi Cells, Molecular Layer Interneurons, and Purkinje Cells) and validated it against experimental data and the corresponding spiking neural network (SNN) microcircuit model. The cerebellar MF was built using a system of equations, where properties of neuronal populations and topological parameters are embedded in inter-dependent transfer functions. The model time constant was optimised using local field potentials recorded experimentally from acute mouse cerebellar slices as a template. The MF reproduced the average dynamics of different neuronal populations in response to various input patterns and predicted the modulation of the Purkinje Cells firing depending on cortical plasticity, which drives learning in associative tasks, and the level of feedforward inhibition. The cerebellar MF provides a computationally efficient tool for future investigations of the causal relationship between microscopic neuronal properties and ensemble brain activity in virtual brain models addressing both physiological and pathological conditions.


Subject(s)
Cerebellum , Neocortex , Animals , Mice , Purkinje Cells , Neurons , Biophysics
16.
Front Aging Neurosci ; 15: 1204134, 2023.
Article in English | MEDLINE | ID: mdl-37577354

ABSTRACT

Introduction: Neural circuit alterations lay at the core of brain physiopathology, and yet are hard to unveil in living subjects. The Virtual Brain (TVB) modeling, by exploiting structural and functional magnetic resonance imaging (MRI), yields mesoscopic parameters of connectivity and synaptic transmission. Methods: We used TVB to simulate brain networks, which are key for human brain function, in Alzheimer's disease (AD) and frontotemporal dementia (FTD) patients, whose connectivity and synaptic parameters remain largely unknown; we then compared them to healthy controls, to reveal novel in vivo pathological hallmarks. Results: The pattern of simulated parameter differed between AD and FTD, shedding light on disease-specific alterations in brain networks. Individual subjects displayed subtle differences in network parameter patterns that significantly correlated with their individual neuropsychological, clinical, and pharmacological profiles. Discussion: These TVB simulations, by informing about a new personalized set of networks parameters, open new perspectives for understanding dementias mechanisms and design personalized therapeutic approaches.

17.
J Neurol Neurosurg Psychiatry ; 94(12): 992-1003, 2023 12.
Article in English | MEDLINE | ID: mdl-37468305

ABSTRACT

BACKGROUND: Network-based measures are emerging MRI markers in multiple sclerosis (MS). We aimed to identify networks of white (WM) and grey matter (GM) damage that predict disability progression and cognitive worsening using data-driven methods. METHODS: We analysed data from 1836 participants with different MS phenotypes (843 in a discovery cohort and 842 in a replication cohort). We calculated standardised T1-weighted/T2-weighted (sT1w/T2w) ratio maps in brain GM and WM, and applied spatial independent component analysis to identify networks of covarying microstructural damage. Clinical outcomes were Expanded Disability Status Scale worsening confirmed at 24 weeks (24-week confirmed disability progression (CDP)) and time to cognitive worsening assessed by the Symbol Digit Modalities Test (SDMT). We used Cox proportional hazard models to calculate predictive value of network measures. RESULTS: We identified 8 WM and 7 GM sT1w/T2w networks (of regional covariation in sT1w/T2w measures) in both cohorts. Network loading represents the degree of covariation in regional T1/T2 ratio within a given network. The loading factor in the anterior corona radiata and temporo-parieto-frontal components were associated with higher risks of developing CDP both in the discovery (HR=0.85, p<0.05 and HR=0.83, p<0.05, respectively) and replication cohorts (HR=0.84, p<0.05 and HR=0.80, p<0.005, respectively). The decreasing or increasing loading factor in the arcuate fasciculus, corpus callosum, deep GM, cortico-cerebellar patterns and lesion load were associated with a higher risk of developing SDMT worsening both in the discovery (HR=0.82, p<0.01; HR=0.87, p<0.05; HR=0.75, p<0.001; HR=0.86, p<0.05 and HR=1.27, p<0.0001) and replication cohorts (HR=0.82, p<0.005; HR=0.73, p<0.0001; HR=0.80, p<0.005; HR=0.85, p<0.01 and HR=1.26, p<0.0001). CONCLUSIONS: GM and WM networks of microstructural changes predict disability and cognitive worsening in MS. Our approach may be used to identify patients at greater risk of disability worsening and stratify cohorts in treatment trials.


Subject(s)
Multiple Sclerosis , White Matter , Humans , Multiple Sclerosis/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , White Matter/diagnostic imaging , White Matter/pathology , Magnetic Resonance Imaging/methods , Cerebral Cortex/pathology , Brain/diagnostic imaging , Brain/pathology
18.
Phys Med ; 112: 102610, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37331082

ABSTRACT

PURPOSE: The use of topological metrics to derive quantitative descriptors from structural connectomes is receiving increasing attention but deserves specific studies to investigate their reproducibility and variability in the clinical context. This work exploits the harmonization of diffusion-weighted acquisition for neuroimaging data performed by the Italian Neuroscience and Neurorehabilitation Network initiative to obtain normative values of topological metrics and to investigate their reproducibility and variability across centers. METHODS: Different topological metrics, at global and local level, were calculated on multishell diffusion-weighted data acquired at high-field (e.g. 3 T) Magnetic Resonance Imaging scanners in 13 different centers, following the harmonization of the acquisition protocol, on young and healthy adults. A "traveling brains" dataset acquired on a subgroup of subjects at 3 different centers was also analyzed as reference data. All data were processed following a common processing pipeline that includes data pre-processing, tractography, generation of structural connectomes and calculation of graph-based metrics. The results were evaluated both with statistical analysis of variability and consistency among sites with the traveling brains range. In addition, inter-site reproducibility was assessed in terms of intra-class correlation variability. RESULTS: The results show an inter-center and inter-subject variability of <10%, except for "clustering coefficient" (variability of 30%). Statistical analysis identifies significant differences among sites, as expected given the wide range of scanners' hardware. CONCLUSIONS: The results show low variability of connectivity topological metrics across sites running a harmonised protocol.


Subject(s)
Connectome , Adult , Humans , Connectome/methods , Reproducibility of Results , Benchmarking , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging
19.
Eur J Neurol ; 30(9): 2769-2780, 2023 09.
Article in English | MEDLINE | ID: mdl-37318885

ABSTRACT

BACKGROUND AND PURPOSE: There is increasing evidence that cardiovascular risk (CVR) contributes to disability progression in multiple sclerosis (MS). CVR is particularly prevalent in secondary progressive MS (SPMS) and can be quantified through validated composite CVR scores. The aim was to examine the cross-sectional relationships between excess modifiable CVR, whole and regional brain atrophy on magnetic resonance imaging, and disability in patients with SPMS. METHODS: Participants had SPMS, and data were collected at enrolment into the MS-STAT2 trial. Composite CVR scores were calculated using the QRISK3 software. Prematurely achieved CVR due to modifiable risk factors was expressed as QRISK3 premature CVR, derived through reference to the normative QRISK3 dataset and expressed in years. Associations were determined with multiple linear regressions. RESULTS: For the 218 participants, mean age was 54 years and median Expanded Disability Status Scale was 6.0. Each additional year of prematurely achieved CVR was associated with a 2.7 mL (beta coefficient; 95% confidence interval 0.8-4.7; p = 0.006) smaller normalized whole brain volume. The strongest relationship was seen for the cortical grey matter (beta coefficient 1.6 mL per year; 95% confidence interval 0.5-2.7; p = 0.003), and associations were also found with poorer verbal working memory performance. Body mass index demonstrated the strongest relationships with normalized brain volumes, whilst serum lipid ratios demonstrated strong relationships with verbal and visuospatial working memory performance. CONCLUSIONS: Prematurely achieved CVR is associated with lower normalized brain volumes in SPMS. Future longitudinal analyses of this clinical trial dataset will be important to determine whether CVR predicts future disease worsening.


Subject(s)
Cardiovascular Diseases , Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Humans , Middle Aged , Multiple Sclerosis/pathology , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Multiple Sclerosis, Chronic Progressive/pathology , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cross-Sectional Studies , Risk Factors , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Memory, Short-Term , Heart Disease Risk Factors , Atrophy/pathology , Disability Evaluation , Disease Progression , STAT2 Transcription Factor
20.
Phys Med ; 110: 102577, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37126963

ABSTRACT

Initiatives for the collection of harmonized MRI datasets are growing continuously, opening questions on the reliability of results obtained in multi-site contexts. Here we present the assessment of the brain anatomical variability of MRI-derived measurements obtained from T1-weighted images, acquired according to the Standard Operating Procedures, promoted by the RIN-Neuroimaging Network. A multicentric dataset composed of 77 brain T1w acquisitions of young healthy volunteers (mean age = 29.7 ± 5.0 years), collected in 15 sites with MRI scanners of three different vendors, was considered. Parallelly, a dataset of 7 "traveling" subjects, each undergoing three acquisitions with scanners from different vendors, was also used. Intra-site, intra-vendor, and inter-site variabilities were evaluated in terms of the percentage standard deviation of volumetric and cortical thickness measures. Image quality metrics such as contrast-to-noise and signal-to-noise ratio in gray and white matter were also assessed for all sites and vendors. The results showed a measured global variability that ranges from 11% to 19% for subcortical volumes and from 3% to 10% for cortical thicknesses. Univariate distributions of the normalized volumes of subcortical regions, as well as the distributions of the thickness of cortical parcels appeared to be significantly different among sites in 8 subcortical (out of 17) and 21 cortical (out of 68) regions of i nterest in the multicentric study. The Bland-Altman analysis on "traveling" brain measurements did not detect systematic scanner biases even though a multivariate classification approach was able to classify the scanner vendor from brain measures with an accuracy of 0.60 ± 0.14 (chance level 0.33).


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Young Adult , Adult , Reproducibility of Results , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...