Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 186: 108610, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38626495

ABSTRACT

Greater Cairo, the largest megacity of the Middle East North Africa (MENA) region, is currently suffering from major aerosol pollution, posing a significant threat to public health. However, the main sources of pollution remain insufficiently characterized due to limited atmospheric observations. To bridge this knowledge gap, we conducted a continuous 2-month field study during the winter of 2019-2020 at an urban background site, documenting for the first time the chemical and physical properties of submicron (PM1) aerosols. Crustal material from both desert dust and road traffic dust resuspension contributed as much as 24 % of the total PM1 mass (rising to 66 % during desert dust events), a figure not commonly observed in urban environments. Our observations showed significant decreases in black carbon concentrations and ammonium sulfate compared to data from 15 years ago, indicating an important reduction in both local and regional emissions as a result of effective mitigation measures. The diurnal variability of carbonaceous aerosols was attributed to emissions emanating from local traffic at rush hours and nighttime open biomass burning. Surprisingly, semi-volatile ammonium chloride (NH4Cl) originating from local open biomass and waste burning was found to be the main chemical species in PM1 over Cairo. Its nighttime formation contributed to aerosol water uptake during morning hours, thereby playing a major role in the build-up of urban haze. While our results confirm the persistence of a significant dust reservoir over Cairo, they also unveil an additional source of highly hygroscopic (semi-volatile) inorganic salts, leading to a unique type of urban haze. This haze, with dominant contributors present in both submicron (primarily as NH4Cl) and supermicron (largely as dust) modes, underscores the potential implications of heterogeneous chemical transformation of air pollutants in urban environments.


Subject(s)
Aerosols , Air Pollutants , Air Pollution , Environmental Monitoring , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , Egypt , Air Pollution/statistics & numerical data , Particulate Matter/analysis , Cities , Dust/analysis , Particle Size
3.
Environ Sci Pollut Res Int ; 30(2): 5059-5075, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35976593

ABSTRACT

Many studies have detected a relationship between diarrhea morbidity rates with the changes in precipitation, temperature, floods, droughts, water shortage, etc. But, most of the authors were cautious in their studies, because of the lack of empirical climate-health data and there were large uncertainties in the future projections. The study aimed to refine the link between the morbidity rates of diarrhea in some Egyptian governorates representative of the three Egyptian geographical divisions with the meteorological changes that occurred in the 2006-2016 period for which the medical data are available, as a case study. Medical raw data was collected from the Information Centre Department of the Egyptian Ministry of Health and Population. The meteorological data of temperature and precipitation extremes were defined as data outside the 10th-90th percentile range of values of the period of study, and their analysis was done using a methodology similar to the one recommended by the WMO and integrated in the CLIMDEX software. Relationships between the morbidity rates of diarrhea in seven Egyptian governorates and the meteorological changes that occurred in the period 2006 to 2016 were analyzed using multiple linear regression analysis to identify the most effective meteorological factor that affects the trend of morbidity rate of diarrhea in each governorate. Statistical analysis revealed that some meteorological parameters can be used as predictors for morbidity rates of diarrhea in Cairo, Alexandria, and Gharbia, but not in Aswan, Behaira, and Dakahlia where the temporal evolution cannot be related with meteorology. In Red Sea, there was no temporal trend and no significant relationships between the diarrhea morbidity rate and meteorological parameters. The predictor meteorological parameters for morbidity rates of diarrhea were found to be depending on the geographic locations and infrastructures in these governorates. It was concluded that the meteorological data that can be used as predictors for the morbidity rate of diarrhea is depending on the geographical location and infrastructures of the target location. The socioeconomic levels as well as the infrastructures in the governorate must be considered confounders in future studies.


Subject(s)
Climate Change , Diarrhea , Humans , Egypt/epidemiology , Diarrhea/epidemiology , Droughts , Morbidity
4.
Sustain Cities Soc ; 74: 103170, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34290956

ABSTRACT

Implemented quarantine due to the ongoing novel coronavirus (agent of COVID-19) has an immense impact on human mobility and economic activities as well as on air quality. Since then, and due to the drastic reduction in pollution levels in cities across the world, a large discussion has been magnetized regarding if the lockdown is an adequate alternative counter-measure for enhancing air quality. This paper aimed at studying the Air Quality Index (AQI), PM2.5, and tropospheric NO2 levels in three lockdown phases (before, during, and after) among 21 cities around the world. Simple before/after comparison approach was carried out to capture the declining trend in air pollution levels caused by the lockdown restrictions. The results showed that the frequency distribution for NO2 is more variable than that for PM2.5, and the distribution is flatter from 2020 to the baseline 2018-2019 period. Besides, AQI, in most of the cities, has varied from high to mild pollution during the lockdown and was moderate before. Although during the lockdown, a reduction of 3 to 58% of daily NO2 concentrations was observed across the cities, an increase was detected in three cities including Abidjan (1%), Conakry (3%), and Chengdu (10%). Despite this mixed trend, the NO2 time series clearly showed the effect of the unlocking phase where the NO2 levels increased in almost all cities. Similarly, PM2.5 concentrations have increased in the post-lockdown period, with 50% of the cities reporting significant positive differences between the lock and the unlock phase. Then, the levels of PM2.5 were higher at the pre-lockdown phase than at any other time exhibiting a "U" shape. In addition, during Ramadan, it was noted that altered patterns of daily activities in some Islamic cities have a significant negative impact on air quality.

5.
Environ Sci Pollut Res Int ; 26(23): 23524-23541, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31203549

ABSTRACT

The densely populated Greater Cairo (GC) region suffers from severe air quality issues caused by high levels of anthropogenic activities, such as motorized traffic, industries, and agricultural biomass burning events, along with natural sources of particulate matter, such as wind erosion of arid surfaces. Surface-measured concentrations of particulate matter (PM10), sulfur dioxide (SO2), and ozone (O3) and its precursor's gases (nitrogen dioxide, NO2; carbon monoxide, CO) were obtained for the GC region. The PM10 concentrations were found to exceed remarkably the Egyptian guidelines (150 µg/m3). These high levels of PM10 were recorded throughout 68% of the period of measurement in some industrial areas (El-Kolaly). The measured data of pollutants were used for both the evaluation of environmental pollution levels and the validation of the online-integrated regional climate chemistry model "RegCM-CHEM4." Calculation of the bias between the model results and the measured data was used to evaluate the model performance in order to assess its ability in reproducing the chemical species over the area. The model was found to reproduce the seasonal cycle of the pollutants successfully, but with a large underestimation of the PM10 values. Validation of the RegCM-CHEM4 indicated that the emission inventories of mobile sources and anthropogenic activities need to be improved especially with respect to local and regional activities in order to enhance air quality simulations over the GC region.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring/methods , Models, Chemical , Air Pollution/analysis , Carbon Monoxide/analysis , Cities , Egypt , Industry , Nitrogen Dioxide/analysis , Ozone/analysis , Particulate Matter/analysis , Sulfur Dioxide/analysis , Wind
6.
Environ Res ; 160: 223-231, 2018 01.
Article in English | MEDLINE | ID: mdl-29024908

ABSTRACT

OBJECTIVE: The poor outdoor air quality in megacities of the developing world and its impact on health is a matter of concern for both the local populations and the decision-makers. The objective of this work is to quantify the mortality attributable to long-term exposure to PM2.5, NO2, and O3 in Greater Cairo (Egypt). METHODS: We analyze the temporal and spatial variability of the three pollutants concentrations measured at 18 stations of the area. Then, we apply the method recommended by the WHO to estimate the excess mortality. In this assessment, three different shapes (log-linear, linear, and log-log) of the concentration-response functions (CRF) are used. RESULTS: With PM2.5 concentrations varying from 50 to more than 100µg/m3 in the different sectors of the megacity, the spatial variability of this pollutant is found to be one important cause of uncertainty on the excess mortality associated with it. Also important is the choice of the CRF. With the average (75µg/m3) PM2.5 concentration and the most favorable log-log shape of the CRF, 11% (CI, 9-14%) of the non-accidental mortality in the population older than 30 years can still be attributed to PM2.5, which corresponds to 12520 (CI, 10240-15930) yearly premature deaths. Should the Egyptian legal 70µg/m3 PM10 limit (corresponding to approximately 37.5µg/m3 for PM2.5) be met, this number would be reduced to 7970, meaning that 4550 premature deaths could be avoided each year. Except around some industrial or traffic hot spots, NO2 concentration is found to be below the 40µg/m3 air quality guideline of the WHO. However, the average concentration (34µg/m3) of this gas exceeds the stricter 10µg/m3 recommendation of the HRAPIE project and it is thus estimated that from 7850 to 10470 yearly deaths can be attributed to NO2. Finally, with the ozone concentration measured at one station only, it is found that, depending on the choice of the CRF, between 2.4% and 8.8% of the mortality due to respiratory diseases can be attributed to this gas. CONCLUSION: In Greater Cairo, PM2.5 and NO2 constitute major health risks. The best estimate is that in the population older than 30 years, 11% and 8% of the non-accidental mortality can be attributed to these two pollutants, respectively.


Subject(s)
Air Pollution/adverse effects , Cities/statistics & numerical data , Mortality , Nitrogen Dioxide/toxicity , Particulate Matter/toxicity , Adolescent , Adult , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Air Pollution/statistics & numerical data , Child , Child, Preschool , Egypt/epidemiology , Humans , Infant , Inhalation Exposure/adverse effects , Inhalation Exposure/analysis , Nitrogen Dioxide/analysis , Ozone/analysis , Ozone/toxicity , Particulate Matter/analysis , Respiratory Tract Diseases/etiology , Respiratory Tract Diseases/mortality , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...