Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Top Microbiol Immunol ; 283: 61-119, 2004.
Article in English | MEDLINE | ID: mdl-15298168

ABSTRACT

The nonsegmented negative-strand (NNS) RNA viruses of the order Mononegavirales include a wide variety of human, animal, and plant pathogens. The NNS RNA genomes of these viruses are templates for two distinct RNA synthetic processes: transcription to generate mRNAs and replication of the genome via production of a positive-sense antigenome that acts as template to generate progeny negative-strand genomes. The four virus families within the Mononegavirales all express the information encoded in their genomes by transcription of discrete subgenomic mRNAs. The key feature of transcriptional control in the NNS RNA viruses is entry of the virus-encoded RNA-dependent RNA polymerase at a single 3' proximal site followed by obligatory sequential transcription of the linear array of genes. Levels of gene expression are primarily regulated by position of each gene relative to the single promoter and also by cis-acting sequences located at the beginning and end of each gene and at the intergenic junctions. Obligatory sequential transcription dictates that termination of each upstream gene is required for initiation of downstream genes. Therefore, termination is a means to regulate expression of individual genes within the framework of a single transcriptional promoter. By engineering either whole virus genomes or subgenomic replicon derivatives, elements important for signaling transcript initiation, 5' end modification, 3' end polyadenylation, and transcription termination have been identified. Although the diverse families of NNS RNA virus use different sequences to control these processes, transcriptional termination is a common theme in controlling gene expression and overall transcriptional regulation is key in controlling the outcome of viral infection. The latest models for control of replication and transcription are discussed.


Subject(s)
Mononegavirales/physiology , RNA Viruses/physiology , RNA, Viral/biosynthesis , Transcription, Genetic , Virus Replication , Gene Expression Regulation, Viral , Molecular Sequence Data , Mononegavirales/genetics , RNA Viruses/genetics , RNA, Messenger/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...