Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Subcell Biochem ; 104: 139-179, 2024.
Article in English | MEDLINE | ID: mdl-38963487

ABSTRACT

Lipoprotein lipase (LPL) is a critical enzyme in humans that provides fuel to peripheral tissues. LPL hydrolyzes triglycerides from the cores of lipoproteins that are circulating in plasma and interacts with receptors to mediate lipoprotein uptake, thus directing lipid distribution via catalytic and non-catalytic functions. Functional losses in LPL or any of its myriad of regulators alter lipid homeostasis and potentially affect the risk of developing cardiovascular disease-either increasing or decreasing the risk depending on the mutated protein. The extensive LPL regulatory network tunes LPL activity to allocate fatty acids according to the energetic needs of the organism and thus is nutritionally responsive and tissue dependent. Multiple pharmaceuticals in development manipulate or mimic these regulators, demonstrating their translational importance. Another facet of LPL biology is that the oligomeric state of the enzyme is also central to its regulation. Recent structural studies have solidified the idea that LPL is regulated not only by interactions with other binding partners but also by self-associations. Here, we review the complexities of the protein-protein and protein-lipid interactions that govern LPL structure and function.


Subject(s)
Lipoprotein Lipase , Lipoprotein Lipase/metabolism , Lipoprotein Lipase/chemistry , Lipoprotein Lipase/genetics , Humans , Animals , Protein Binding , Triglycerides/metabolism , Lipid Metabolism
2.
Pathogens ; 10(8)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34451504

ABSTRACT

Blood filter paper strips are cost-effective materials used to store body fluid specimens under challenging field conditions, extending the reach of zoonotic pathogen surveillance and research. We describe an optimized procedure for the extraction of parasite DNA from whole blood (WB) stored on Type I Advantec Nobuto strips from both experimentally spiked and field-collected specimens from canine and skunks, respectively. When comparing two commercial kits for extraction, Qiagen's DNeasy Blood & Tissue Kit performed best for the detection of parasite DNA by PCR from Trypanosoma cruzi-spiked canine WB samples on Nobuto strips. To further optimize recovery of ß-actin from field-collected skunk WB archived on Nobuto strips, we modified the extraction procedures for the Qiagen kit with a 90 °C incubation step and extended incubation post-addition of proteinase K, a method subsequently employed to identify a T. cruzi infection in one of the skunks. Using this optimized extraction method can efficaciously increase the accuracy and precision of future molecular epidemiologic investigations targeting neglected tropical diseases in field-collected WB specimens on filter strips.

3.
Vector Borne Zoonotic Dis ; 19(4): 265-273, 2019 04.
Article in English | MEDLINE | ID: mdl-30571182

ABSTRACT

Eleven triatomine species, the vector for Chagas disease, are endemic in the southern U.S. While traditionally thought to only occur in rural habitats and sylvatic transmission cycles, recent studies provide compounding evidence that triatomines could exist in urban habitats and domestic transmission cycles in Texas. We conducted a study of active and passive surveillance techniques over 3 years (2016-2018) in the City of Houston, Harris County, Texas to determine the presence of triatomines in this metroplex. Active surveillance methods uncovered Triatoma sanguisuga nymphs from two locations in downtown Houston city parks. We also documented the first Trypanosoma cruzi positive kissing bug collected in an urban environment of Harris County, Texas. Our findings provide evidence that triatomines can be found in heavily populated U.S. urban environments, and warrant public health support for expanded triatomine and Chagas disease surveillance in city settings.


Subject(s)
Chagas Disease/transmission , Insect Vectors/parasitology , Triatoma/parasitology , Animals , Chagas Disease/epidemiology , Cities , Ecosystem , Humans , Texas/epidemiology , Trypanosoma cruzi
SELECTION OF CITATIONS
SEARCH DETAIL
...