Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Microbiol ; 48(7): 2387-95, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20484608

ABSTRACT

High-throughput multiplex assays for respiratory viruses are an important step forward in diagnostic virology. We compared one such assay, the PLx Multi-Code Respiratory Virus Panel (PLx-RVP), manufactured by Eragen Biosciences, Inc. (Madison, WI), with conventional virologic testing, consisting of fluorescent-antibody staining plus testing with the R-mix system and fibroblast tube cultures. The test set consisted of 410 archived respiratory specimens, mostly nasopharyngeal swabs, including 210 that had been positive by conventional testing for a balanced selection of common respiratory viruses. Specimens yielding discrepant results were evaluated using a panel of respiratory virus PCR assays developed, characterized, and validated with clinical specimens. PLx-RVP increased the total rate of detection of viruses by 35.8%, and there was a 25.7% increase in the rate of detection of positive specimens. Reference PCR assay results corroborated the PLx-RVP result for 54 (82%) of 66 discrepancies with conventional testing. Of the 12 specimens with discrepancies between PLx-RVp and the reference PCRs, 6 were positive for rhinovirus by PLx-RVP and the presence of rhinovirus was confirmed by nucleotide sequencing. The remaining six specimens included five in which the PLx-RVP failed to detect parainfluenza virus and one in which the detection of influenza A virus by PLx-RVP could not be confirmed by the reference PCR. Taking the results of the reference PCR assay results into account, the sensitivities of the PLx-RVP for individual viruses ranged from 94 to 100% and the specificities ranged from 99 to 100%. We conclude that PLx-RVP is a highly accurate system for the detection of respiratory viruses and significantly improves the rate of detection of these viruses compared to that by conventional virologic testing.


Subject(s)
Polymerase Chain Reaction/methods , RNA Viruses/genetics , Respiratory Tract Infections/virology , Virology/methods , Adenoviridae/genetics , DNA Primers , Humans , Predictive Value of Tests , Reproducibility of Results , Respiratory Tract Infections/diagnosis
2.
J Biotechnol ; 112(3): 255-66, 2004 Sep 09.
Article in English | MEDLINE | ID: mdl-15313003

ABSTRACT

The stability of transgenic DNA encoding the synthetic cp4 epsps protein in a diet containing Roundup Ready (RR) canola meal was determined in duodenal fluid (DF) batch cultures from sheep. A real-time TaqMan PCR assay was designed to quantify the degradation of cp4 epsps DNA during incubation in DF at pH 5 or 7. The copy number of cp4 epsps DNA in the diet declined more rapidly (P < 0.05) in DF at pH 5 as compared to pH 7. The decrease was attributed mainly to microbial activity at pH 7 and perhaps to plant endogenous enzymes at pH 5. The 62-bp fragment of cp4 epsps DNA detected by real-time PCR reached a maximum of approximately 1600 copies in the aqueous phase of DF at pH 7, whereas less than 20 copies were detected during incubations in DF at pH 5. A 1363-bp sequence of cp4 epsps DNA was never detected in the aqueous fraction of DF. Additionally, genomic DNA isolated from RR canola seed was used to test the persistence of fragments of free DNA in DF at pH 3.2, 5, and 7, as well as in ruminal fluid and feces. Primers spanning the cp4 epsps DNA coding region amplified sequences ranging in size from 300 to 1363 bp. Free transgenic DNA was least stable in DF at pH 7 where fragments less than 527 bp were detected for up to 2 min and fragments as large as 1363 bp were detected for 0.5 min. This study shows that digestion of plant material and release of transgenic DNA can occur in the ovine small intestine. However, free DNA is rapidly degraded at neutral pH in DF, thus reducing the likelihood that intact transgenic DNA would be available for absorption through the Peyer's Patches in the distal ileum.


Subject(s)
Brassica/genetics , DNA, Plant/genetics , Feces/chemistry , Food, Genetically Modified , Glycine/analogs & derivatives , Intestines/chemistry , Polymerase Chain Reaction/methods , Rumen/chemistry , Animals , Base Sequence , DNA, Plant/analysis , DNA, Plant/chemistry , Genomic Instability/genetics , Molecular Sequence Data , Online Systems , Sheep , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...