Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Cybern ; 48(9): 2583-2597, 2018 Sep.
Article in English | MEDLINE | ID: mdl-28976326

ABSTRACT

This paper considers the problem of maximizing the number of task allocations in a distributed multirobot system under strict time constraints, where other optimization objectives need also be considered. It builds upon existing distributed task allocation algorithms, extending them with a novel method for maximizing the number of task assignments. The fundamental idea is that a task assignment to a robot has a high cost if its reassignment to another robot creates a feasible time slot for unallocated tasks. Multiple reassignments among networked robots may be required to create a feasible time slot and an upper limit to this number of reassignments can be adjusted according to performance requirements. A simulated rescue scenario with task deadlines and fuel limits is used to demonstrate the performance of the proposed method compared with existing methods, the consensus-based bundle algorithm and the performance impact (PI) algorithm. Starting from existing (PI-generated) solutions, results show up to a 20% increase in task allocations using the proposed method.

2.
PLoS One ; 10(3): e0118359, 2015.
Article in English | MEDLINE | ID: mdl-25807273

ABSTRACT

Advances in healthcare and in the quality of life significantly increase human life expectancy. With the aging of populations, new un-faced challenges are brought to science. The human body is naturally selected to be well-functioning until the age of reproduction to keep the species alive. However, as the lifespan extends, unseen problems due to the body deterioration emerge. There are several age-related diseases with no appropriate treatment; therefore, the complex aging phenomena needs further understanding. It is known that immunosenescence is highly correlated to the negative effects of aging. In this work we advocate the use of simulation as a tool to assist the understanding of immune aging phenomena. In particular, we are comparing system dynamics modelling and simulation (SDMS) and agent-based modelling and simulation (ABMS) for the case of age-related depletion of naive T cells in the organism. We address the following research questions: Which simulation approach is more suitable for this problem? Can these approaches be employed interchangeably? Is there any benefit of using one approach compared to the other? Results show that both simulation outcomes closely fit the observed data and existing mathematical model; and the likely contribution of each of the naive T cell repertoire maintenance method can therefore be estimated. The differences observed in the outcomes of both approaches are due to the probabilistic character of ABMS contrasted to SDMS. However, they do not interfere in the overall expected dynamics of the populations. In this case, therefore, they can be employed interchangeably, with SDMS being simpler to implement and taking less computational resources.


Subject(s)
Aging/immunology , Computer Simulation , Immunosenescence/physiology , Models, Biological , Humans , Life Expectancy , Quality of Life
3.
IEEE Trans Syst Man Cybern B Cybern ; 37(6): 1581-98, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18179075

ABSTRACT

Jerne's idiotypic-network theory postulates that the immune response involves interantibody stimulation and suppression, as well as matching to antigens. The theory has proved the most popular artificial immune system (AIS) model for incorporation into behavior-based robotics, but guidelines for implementing idiotypic selection are scarce. Furthermore, the direct effects of employing the technique have not been demonstrated in the form of a comparison with nonidiotypic systems. This paper aims to address these issues. A method for integrating an idiotypic AIS network with a reinforcement-learning (RL)-based control system is described, and the mechanisms underlying antibody stimulation and suppression are explained in detail. Some hypotheses that account for the network advantage are put forward and tested using three systems with increasing idiotypic complexity. The basic RL, a simplified hybrid AIS-RL that implements idiotypic selection independently of derived concentration levels, and a full hybrid AIS-RL scheme are examined. The test bed takes the form of a simulated Pioneer robot that is required to navigate through maze worlds detecting and tracking door markers.


Subject(s)
Algorithms , Artificial Intelligence , Biomimetics/methods , Models, Immunological , Pattern Recognition, Automated/methods , Robotics/methods , Computer Simulation , Motion
SELECTION OF CITATIONS
SEARCH DETAIL
...