Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Langmuir ; 21(18): 8161-7, 2005 Aug 30.
Article in English | MEDLINE | ID: mdl-16114917

ABSTRACT

We have investigated the potential of utilizing naturally occurring spore particles of Lycopodium clavatum as sole emulsifiers of oil and water mixtures. The preferred emulsions, prepared from either oil-borne or aqueous-borne dispersions of the monodispersed particles of diameter 30 microm, are oil-in-water. The particles act as efficient stabilizers for oils of different polarity. Droplets as large as several millimeters are stable to coalescence indefinitely, despite the low coverage of interfaces by particles observed microscopically. Consistent with the emulsion findings, we discover that particles spontaneously adsorb to bare oil-water interfaces of single drops from oil dispersions, whereas adsorption is less spontaneous and extensive from aqueous dispersions. Monolayers of the spore particles at both air-water and oil-water planar interfaces contain particles in an aggregated state forming clusters and chains. The influence of particle concentration, oil/water ratio, and additives in the aqueous phase is studied.

2.
Langmuir ; 20(11): 4345-54, 2004 May 25.
Article in English | MEDLINE | ID: mdl-15969137

ABSTRACT

2-(Dimethylamino)ethyl methacrylate (DMA) was block copolymerized with methyl methacrylate (MMA) using group transfer polymerization to give four AB diblock, ABA triblock, and BAB triblock copolymers of low polydispersity (Mw/Mn < 1.20). In addition, a near-monodisperse styrene-functionalized DMA-based macromonomer was synthesized via oxyanionic polymerization using a potassium 4-vinylbenzyl alcoholate initiator. These five well-defined, tertiary amine methacrylate-based copolymers were evaluated as steric stabilizers for the synthesis of polystyrene latexes via emulsion and dispersion polymerization. The most efficient steric stabilizers proved to be the DMA-MMA diblock copolymer and the DMA-based macromonomer. The polystyrene latexes were characterized in terms of their particle size and morphology, stabilizer content, surface charge, and surface activity using dynamic light scattering, scanning electron microscopy, 1H NMR spectroscopy, aqueous electrophoresis measurements, and surface tensiometry, respectively. The pH-dependent surface activity exhibited by selected latexes suggests potential applications as stimulus-responsive particulate emulsifiers for oil-in-water emulsions.

3.
Eur Phys J E Soft Matter ; 11(3): 273-281, 2003 Jul.
Article in English | MEDLINE | ID: mdl-15011047

ABSTRACT

We produce direct and inverse emulsions stabilized by solid mineral particles. If the total amount of particles is initially insufficient to fully cover the oil-water interfaces, the emulsion droplets coalesce such that the total interfacial area between oil and water is progressively reduced. Since it is likely that the particles are irreversibly adsorbed, the degree of surface coverage by them increases until coalescence is halted. We follow the rate of droplet coalescence from the initial fragmented state to the saturated situation. Unlike surfactant-stabilized emulsions, the coalescence frequency depends on time and particle concentration. Both the transient and final droplet size distributions are relatively narrow and we obtain a linear relation between the inverse average droplet diameter and the total amount of solid particles, with a slope that depends on the mixing intensity. The phenomenology is independent of the mixing type and of the droplet volume fraction allowing the fabrication of both direct and inverse emulsion with average droplet sizes ranging from micron to millimetre.


Subject(s)
Emulsions/chemistry , Adsorption , Biophysical Phenomena , Biophysics , Chemistry, Pharmaceutical/methods , Kinetics , Microscopy, Electron , Oils , Surface-Active Agents/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...