Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 13(1): 4639, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35941141

ABSTRACT

We report strong ferromagnetism of quasiparticle doped holes both within the ab-plane and along the c-axis of Cu-O planes in low-dimensional Au/d-La1.8Ba0.2CuO4/LaAlO3(001) heterostructures (d = 4, 8 and 12 unit-cells) using resonant soft X-ray and magnetic scattering together with X-ray magnetic circular dichroism. Interestingly, ferromagnetism is stronger at a hole doped peak and at an upper Hubbard band of O with spin-polarization degree as high as 40%, revealing strong ferromagnetism of Mottness. For in-ab-plane spin-polarizations, the spin of doped holes in O2p-Cu3d-O2p is a triplet state yielding strong ferromagnetism. For out-of-ab-plane spin-polarization, while the spins of doped holes in both O2p-O2p and Cu3d-Cu3d are triplet states, the spin of doped holes in Cu3d-O2p is a singlet state yielding ferrimagnetism. A ferromagnetic-(002) Bragg-peak of the doped holes is observed and enhanced as a function of d revealing strong ferromagnetism coupling between Cu-O layers along the c-axis.

3.
Nat Commun ; 12(1): 6980, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34848717

ABSTRACT

Electronic correlations play important roles in driving exotic phenomena in condensed matter physics. They determine low-energy properties through high-energy bands well-beyond optics. Great effort has been made to understand low-energy excitations such as low-energy excitons in transition metal dichalcogenides (TMDCs), however their high-energy bands and interlayer correlation remain mysteries. Herewith, by measuring temperature- and polarization-dependent complex dielectric and loss functions of bulk molybdenum disulphide from near-infrared to soft X-ray, supported with theoretical calculations, we discover unconventional soft X-ray correlated-plasmons with low-loss, and electronic transitions that reduce dimensionality and increase correlations, accompanied with significantly modified low-energy excitons. At room temperature, interlayer electronic correlations, together with the intralayer correlations in the c-axis, are surprisingly strong, yielding a three-dimensional-like system. Upon cooling, wide-range spectral-weight transfer occurs across a few tens of eV and in-plane p-d hybridizations become enhanced, revealing strong Coulomb correlations and electronic anisotropy, yielding a two-dimensional-like system. Our result shows the importance of strong electronic, interlayer and intralayer correlations in determining electronic structure and opens up applications of utilizing TMDCs on plasmonic nanolithrography.

4.
Adv Mater ; 30(22): e1707428, 2018 May.
Article in English | MEDLINE | ID: mdl-29667241

ABSTRACT

The interactions between delocalized and localized charges play important roles in correlated electron systems. Here, using a combination of transport measurements, spectroscopic ellipsometry (SE), and X-ray absorption spectroscopy (XAS) supported by theoretical calculations, we reveal the important role of interfacial localized charges and their screening effects in determining the mobility of (La0.3 Sr0.7 )(Al0.65 Ta0.35 )O3 /SrTiO3 (LSAT/SrTiO3 ) interfaces. When the LSAT layer thickness reaches the critical value of 5 uc, the insulating interface abruptly becomes conducting, accompanied by the appearance of a new midgap state. This midgap state emerges at ≈1 eV below the Ti t2g band and shows a strong character of Ti 3dxy - O 2p hybridization. Increasing the LSAT layer from 5 to 18 uc, the number of localized charges increases, resulting in an enhanced screening effect and higher mobile electron mobility. This observation contradicts the traditional semiconductor interface where the localized charges always suppress the carrier mobility. These results demonstrate a new strategy to probe localized charges and mobile electrons in correlated electronic systems and highlight the important role of screening effects from localized charges in improving the mobile electron mobility at complex oxide interfaces.

5.
J Phys Condens Matter ; 28(36): 365002, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27390863

ABSTRACT

UNLABELLED: The interfacial properties between electrodes and the various organic layers that comprise an organic electronic device are of direct relevance in understanding charge injection, extraction and generation. The energy levels and energy-bending of three interfaces; indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate ( PEDOT: PSS), ITO/poly(N-vinylcarbazole) (PVK) and PEDOT: PSS/PVK were measured using ultraviolet photoelectron spectroscopy (UPS) and x-ray photoelectron spectroscopy (XPS). By decoupling the vacuum shift and energy-bending, the energy-bending at these interfaces can be simulated using an electrostatic model that takes into account the energetic disorder of the polymers. The model is further extended to include blended mixtures of semiconductors at differing concentrations and it was found that a very good agreement exists between the experiment and theory for all interfaces. This suggests that the electrostatic model can be used to describe energy-bending at the interface between any organic semiconductors. Further investigation into the effect of the Gaussian density of states width on energy-bending is warranted.

6.
J Nanosci Nanotechnol ; 14(5): 3398-402, 2014 May.
Article in English | MEDLINE | ID: mdl-24734558

ABSTRACT

Here we report our findings on the removal of metallic single-walled carbon nanotubes using an aqueous two-phase system. The aqueous two-phase system contained as received carbon nanotubes, polyethylene glycol, dextran, N-methylpyrrolidone, cetyltrimethylammonium bromide, and water which phase separated into top and bottom phases. The top phase was dominated by polyethylene glycol whereas the bottom phase was dominated by dextran. The dextran-rich phase contained more semiconducting species while metallic species was more abundant in the polyethylene glycol rich-phase. It was found via Fourier-Transform Infrared Spectroscopy that cetyltrimethylammonium bromide only present in the dextran-rich phase. A selectivity mechanism is tentatively proposed and discussed.

7.
Phys Rev Lett ; 104(22): 225001, 2010 Jun 04.
Article in English | MEDLINE | ID: mdl-20867176

ABSTRACT

By use of high intensity XUV radiation from the FLASH free-electron laser at DESY, we have created highly excited exotic states of matter in solid-density aluminum samples. The XUV intensity is sufficiently high to excite an inner-shell electron from a large fraction of the atoms in the focal region. We show that soft-x-ray emission spectroscopy measurements reveal the electronic temperature and density of this highly excited system immediately after the excitation pulse, with detailed calculations of the electronic structure, based on finite-temperature density functional theory, in good agreement with the experimental results.


Subject(s)
Aluminum/chemistry , Electrons , Photochemical Processes , Plasma Gases/chemistry , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...