Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Radiat Biol ; 100(6): 890-902, 2024.
Article in English | MEDLINE | ID: mdl-38631047

ABSTRACT

Purpose: Continuous exposure to ionizing radiation at a low dose rate poses significant health risks to humans on deep space missions, prompting the need for mechanistic studies to identify countermeasures against its deleterious effects. Mitochondria are a major subcellular locus of radiogenic injury, and may trigger secondary cellular responses through the production of reactive oxygen species (mtROS) with broader biological implications. Methods and Materials: To determine the contribution of mtROS to radiation-induced cellular responses, we investigated the impacts of protracted γ-ray exposures (IR; 1.1 Gy delivered at 0.16 mGy/min continuously over 5 days) on mitochondrial function, gene expression, and the protein secretome of human HCA2-hTERT fibroblasts in the presence and absence of a mitochondria-specific antioxidant mitoTEMPO (MT; 5 µM). Results: IR increased fibroblast mitochondrial oxygen consumption (JO2) and H2O2 release rates (JH2O2) under energized conditions, which corresponded to higher protein expression of NADPH Oxidase (NOX) 1, NOX4, and nuclear DNA-encoded subunits of respiratory chain Complexes I and III, but depleted mtDNA transcripts encoding subunits of the same complexes. This was associated with activation of gene programs related to DNA repair, oxidative stress, and protein ubiquination, all of which were attenuated by MT treatment along with radiation-induced increases in JO2 and JH2O2. IR also increased secreted levels of interleukin-8 and Type I collagens, while decreasing Type VI collagens and enzymes that coordinate assembly and remodeling of the extracellular matrix. MT treatment attenuated many of these effects while augmenting others, revealing complex effects of mtROS in fibroblast responses to IR. Conclusion: These results implicate mtROS production in fibroblast responses to protracted radiation exposure, and suggest potentially protective effects of mitochondrial-targeted antioxidants against radiogenic tissue injury in vivo.


Subject(s)
Fibroblasts , Gamma Rays , Mitochondria , Reactive Oxygen Species , Humans , Fibroblasts/radiation effects , Fibroblasts/metabolism , Reactive Oxygen Species/metabolism , Mitochondria/radiation effects , Mitochondria/metabolism , Gamma Rays/adverse effects , Cell Line , Radiation Exposure/adverse effects , Organophosphorus Compounds , Piperidines
2.
Sci Rep ; 14(1): 7571, 2024 03 30.
Article in English | MEDLINE | ID: mdl-38555310

ABSTRACT

Obesity is a growing concern in human and equine populations, predisposing to metabolic pathologies and reproductive disturbances. Cellular lipid accumulation and mitochondrial dysfunction play an important role in the pathologic consequences of obesity, which may be mitigated by dietary interventions targeting these processes. We hypothesized that obesity in the mare promotes follicular lipid accumulation and altered mitochondrial function of oocytes and granulosa cells, potentially contributing to impaired fertility in this population. We also predicted that these effects could be mitigated by dietary supplementation with a combination of targeted nutrients to improve follicular cell metabolism. Twenty mares were grouped as: Normal Weight [NW, n = 6, body condition score (BCS) 5.7 ± 0.3], Obese (OB, n = 7, BCS 7.7 ± 0.2), and Obese Diet Supplemented (OBD, n = 7, BCS 7.7 ± 0.2), and fed specific feed regimens for ≥ 6 weeks before sampling. Granulosa cells, follicular fluid, and cumulus-oocyte complexes were collected from follicles ≥ 35 mm during estrus and after induction of maturation. Obesity promoted several mitochondrial metabolic disturbances in granulosa cells, reduced L-carnitine availability in the follicle, promoted lipid accumulation in cumulus cells and oocytes, and increased basal oocyte metabolism. Diet supplementation of a complex nutrient mixture mitigated most of the metabolic changes in the follicles of obese mares, resulting in parameters similar to NW mares. In conclusion, obesity disturbs the equine ovarian follicle by promoting lipid accumulation and altering mitochondrial function. These effects may be partially mitigated with targeted nutritional intervention, thereby potentially improving fertility outcomes in the obese female.


Subject(s)
Oocytes , Ovarian Follicle , Humans , Horses , Animals , Female , Ovarian Follicle/metabolism , Oocytes/metabolism , Follicular Fluid , Obesity/metabolism , Lipids , Dietary Supplements
4.
Andrology ; 12(4): 918-931, 2024 May.
Article in English | MEDLINE | ID: mdl-37608516

ABSTRACT

BACKGROUND: Phospholipase C zeta (PLCZ1) is considered the major sperm-borne oocyte activation factor. Cryopreserved stallion spermatozoa are commonly used for intracytoplasmic sperm injection (ICSI). However, plasma membrane damage and protein modifications caused by cryopreservation could impair sperm structure and function, leading to a reduction of PLCZ1 and oocyte activation after ICSI. OBJECTIVES: We compared membrane integrity and PLCZ1 abundance in populations for fresh, frozen, and refrozen stallion spermatozoa, either thawed and refrozen at room or low temperature; and examined the effect of relative PLCZ1 content on cleavage after ICSI. MATERIALS AND METHODS: Western blotting, ELISA, and immunofluorescence were conducted in stallion spermatozoa, freezing extenders, and detergent-extracted sperm fractions to detect and quantify PLCZ1. Retrospectively, PLCZ1 content and cleavage rate were analyzed. Fresh, frozen, and refrozen at room and low temperatures spermatozoa were evaluated for acrosomal and plasma membrane integrity and PLCZ1 content using flow cytometry. RESULTS: Western blotting, ELISA, and immunofluorescence revealed significant reduction of PLCZ1 in spermatozoa after cryopreservation and confirmed PLCZ1 detection in extenders. After detergent extraction, a PLCZ1-nonextractable fraction remained in the postacrosomal region of spermatozoa. Plasma membrane integrity was significantly reduced after freezing. Acrosomal and plasma membrane integrity were similar between frozen and refrozen samples at low temperature, but both were significantly higher than samples refrozen at room temperature. Acrosomal and plasma membrane integrity significantly correlated to PLCZ1 content. Percentages of PLCZ1-labeled spermatozoa and PLCZ1 content were reduced after freezing but not after refreezing. Relative content and localization of PLCZ1 were associated with cleavage rates after ICSI. DISCUSSION AND CONCLUSION: Sperm PLCZ1 content associates with cleavage rates after ICSI. Cryopreservation is detrimental to sperm plasma membrane integrity and PLCZ1 retention. However, refreezing did not result in additional PLCZ1 loss. Refreezing stallion spermatozoa at a low temperature resulted in better survival but did not improve PLCZ1 retention.


Subject(s)
Detergents , Semen Preservation , Male , Animals , Horses , Detergents/pharmacology , Detergents/metabolism , Retrospective Studies , Semen , Sperm Motility , Spermatozoa/metabolism , Cryopreservation/methods , Oocytes , Type C Phospholipases/metabolism , Cell Membrane , Semen Preservation/methods
5.
Am J Physiol Regul Integr Comp Physiol ; 325(5): R523-R533, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37642284

ABSTRACT

Maternal diet during pregnancy is associated with offspring metabolic risk trajectory in humans and animal models, but the prenatal origins of these effects are less clear. We examined the effects of a high-fat diet (HFD) during pregnancy on fetal skeletal muscle metabolism and metabolic risk parameters using an ovine model. White-faced ewes were fed a standardized diet containing 5% fat wt/wt (CON), or the same diet supplemented with 6% rumen-protected fats (11% total fat wt/wt; HFD) beginning 2 wk before mating until midgestation (GD75). Maternal HFD increased maternal weight gain, fetal body weight, and low-density lipoprotein levels in the uterine and umbilical circulation but had no significant effects on circulating glucose, triglycerides, or placental fatty acid transporters. Fatty acid (palmitoylcarnitine) oxidation capacity of permeabilized hindlimb muscle fibers was >50% higher in fetuses from HFD pregnancies, whereas pyruvate and maximal (mixed substrate) oxidation capacities were similar to CON. This corresponded to greater triacylglycerol content and protein expression of fatty acid transport and oxidation enzymes in fetal muscle but no significant effect on respiratory chain complexes or pyruvate dehydrogenase expression. However, serine-308 phosphorylation of insulin receptor substrate-1 was greater in fetal muscle from HFD pregnancies along with c-jun-NH2 terminal kinase activation, consistent with prenatal inhibition of skeletal muscle insulin signaling. These results indicate that maternal high-fat feeding shifts fetal skeletal muscle metabolism toward a greater capacity for fatty acid over glucose utilization and favors prenatal development of insulin resistance, which may predispose offspring to metabolic syndrome later in life.NEW & NOTEWORTHY Maternal diet during pregnancy is associated with offspring metabolic risk trajectory in humans and animal models, but the prenatal origins of these effects are less clear. This study examined the effects of a high-fat diet during pregnancy on metabolic risk parameters using a new sheep model. Results align with findings previously reported in nonhuman primates, demonstrating changes in fetal skeletal muscle metabolism that may predispose offspring to metabolic syndrome later in life.


Subject(s)
Insulin Resistance , Metabolic Syndrome , Animals , Female , Pregnancy , Diet, High-Fat/adverse effects , Fatty Acids/metabolism , Fetus/metabolism , Glucose/metabolism , Insulin/metabolism , Insulin Resistance/physiology , Metabolic Syndrome/metabolism , Muscle, Skeletal/metabolism , Placenta/metabolism , Pyruvates/metabolism , Sheep
6.
Placenta ; 137: 70-77, 2023 06.
Article in English | MEDLINE | ID: mdl-37087951

ABSTRACT

INTRODUCTION: Trophoblast mitochondria play important roles in placental energy metabolism, physiology and pathophysiology. Hyperandrogenism has been associated with mitochondrial abnormalities in pregnancy disorders such as pre-eclampsia, gestational diabetes, and intrauterine growth restriction, but the direct impacts of androgen exposure on placental mitochondrial function are unknown. Given the inherent limitations of studying the human placenta during pregnancy, trophoblast cell lines are routinely used to model placental biology in vitro. The aim of this study was to characterize mitochondrial respiratory function in four commonly used trophoblast cell lines to provide a basis for selecting one well-suited to investigating the impact of androgens on trophoblast mitochondrial function. METHODS: Androgen receptor expression, mitochondrial respiration (JO2) and reactive oxygen species (ROS) release rates were evaluated in three human trophoblast cell lines (ACH-3P, BeWo and Swan-71) and one immortalized ovine trophoblast line (iOTR) under basal and substrate-stimulated conditions using high-resolution fluorespirometry. RESULTS: ACH-3P cells exhibited the greatest mitochondrial respiratory capacity and coupling efficiency of the four trophoblast lines tested, along with robust expression of androgen receptor protein that was found to co-localize with mitochondria by immunoblot and immunofluorescence. Acute testosterone administration (10 nM) tended to decrease ACH-3P mitochondrial JO2 and increase ROS release, while chronic (7 days) testosterone exposure increased expression of mitochondrial proteins, JO2, and ROS release. DISCUSSION: These studies establish ACH-3P as a suitable cell line for investigating trophoblast mitochondrial function, and provide foundational evidence supporting links between hyperandrogenism and placental mitochondrial ROS production with potential relevance to several common pregnancy disorders.


Subject(s)
Hyperandrogenism , Trophoblasts , Pregnancy , Female , Animals , Sheep , Humans , Trophoblasts/metabolism , Placenta/metabolism , Reactive Oxygen Species/metabolism , Receptors, Androgen/metabolism , Testosterone/pharmacology , Testosterone/metabolism , Hyperandrogenism/metabolism , Mitochondria/metabolism
7.
Biomed Opt Express ; 13(4): 2103-2116, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35519286

ABSTRACT

Mitochondrial redox is an important indicator of cell metabolism and health, with implications in cancer, diabetes, aging, neurodegenerative diseases, and mitochondrial disease. The most common method to observe redox of individual cells and mitochondria is through fluorescence of NADH and FAD+, endogenous cofactors serve as electron transport inputs to the mitochondrial respiratory chain. Yet this leaves out redox within the respiratory chain itself. To a degree, the missing information can be filled in by exogenous fluorophores, but at the risk of disturbed mitochondrial permeability and respiration. Here we show that variations in respiratory chain redox can be detected up by visible-wavelength transient absorption microscopy (TAM). In TAM, the selection of pump and probe wavelengths can provide multiphoton imaging contrast between non-fluorescent molecules. Here, we applied TAM with a pump at 520nm and probe at 450nm, 490nm, and 620nm to elicit redox contrast from mitochondrial respiratory chain hemeproteins. Experiments were performed with reduced and oxidized preparations of isolated mitochondria and whole muscle fibers, using mitochondrial fuels (malate, pyruvate, and succinate) to set up physiologically relevant oxidation levels. TAM images of muscle fibers were analyzed with multivariate curve resolution (MCR), revealing that the response at 620nm probe provides the best redox contrast and the most consistent response between whole cells and isolated mitochondria.

8.
J Inherit Metab Dis ; 45(1): 111-124, 2022 01.
Article in English | MEDLINE | ID: mdl-34821394

ABSTRACT

Barth syndrome (BTHS) is an X-linked disorder that results from mutations in the TAFAZZIN gene, which encodes a phospholipid transacylase responsible for generating the mature form of cardiolipin in inner mitochondrial membranes. BTHS patients develop early onset cardiomyopathy and a derangement of intermediary metabolism consistent with mitochondrial disease, but the precise alterations in cardiac metabolism that distinguish BTHS from idiopathic forms of cardiomyopathy are unknown. We performed the first metabolic analysis of myocardial tissue from BTHS cardiomyopathy patients compared to age- and sex-matched patients with idiopathic dilated cardiomyopathy (DCM) and nonfailing controls. Results corroborate previous evidence for deficiencies in cardiolipin content and its linoleoyl enrichment as defining features of BTHS cardiomyopathy, and reveal a dramatic accumulation of hydrolyzed (monolyso-) cardiolipin molecular species. Respiratory chain protein deficiencies were observed in both BTHS and DCM, but a selective depletion of complex I was seen only in BTHS after controlling for an apparent loss of mitochondrial density in cardiomyopathic hearts. Distinct shifts in the expression of long-chain fatty acid oxidation enzymes and the tissue acyl-CoA profile of BTHS hearts suggest a specific block in mitochondrial fatty acid oxidation upstream of the conventional matrix beta-oxidation cycle, which may be compensated for by a greater reliance upon peroxisomal fatty acid oxidation and the catabolism of ketones, amino acids, and pyruvate to meet cardiac energy demands. These results provide a comprehensive foundation for exploring novel therapeutic strategies that target the adaptive and maladaptive metabolic features of BTHS cardiomyopathy.


Subject(s)
Barth Syndrome/metabolism , Cardiomyopathies/metabolism , Electron Transport Complex I/metabolism , Fatty Acids/metabolism , Acyltransferases/genetics , Adolescent , Barth Syndrome/genetics , Cardiolipins/metabolism , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Male , Mitochondria/metabolism , Mutation , Myocardium/metabolism , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...