Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Phys Rev Lett ; 124(25): 250401, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32639764

ABSTRACT

The absence of information-entirely or partly-is called ignorance. Naturally, one might ask if some ignorance of a whole system will imply some ignorance of its parts. Our classical intuition tells us yes, however quantum theory tells us no: it is possible to encode information in a quantum system so that despite some ignorance of the whole, it is impossible to identify the unknown part [T. Vidick and S. Wehner, Phys. Rev. Lett. 107, 030402 (2011).PRLTAO0031-900710.1103/PhysRevLett.107.030402]. Experimentally verifying this counterintuitive fact requires controlling and measuring quantum systems of high dimension (d>9). We provide this experimental evidence using the transverse spatial modes of light, a powerful resource for testing high-dimensional quantum phenomena.

2.
Phys Rev Lett ; 123(14): 143604, 2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31702208

ABSTRACT

We implement a general imaging method by measuring the complex degree of coherence using linear optics and photon number resolving detectors. In the absence of collective or entanglement-assisted measurements, our method is optimal over a large range of practically relevant values of the complex degree of coherence. We measure the size and position of a small distant source of pseudothermal light, and show that our method outperforms the traditional imaging method by an order of magnitude in precision. Finally, we show that a lack of photon-number resolution in the detectors has only a modest detrimental effect on measurement precision and simulate imaging using the new and traditional methods with an array of detectors, showing that the new method improves both image clarity and contrast.

3.
Phys Rev Lett ; 123(2): 020402, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31386503

ABSTRACT

We introduce quantum hypercube states, a class of continuous-variable quantum states that are generated as orthographic projections of hypercubes onto the quadrature phase space of a bosonic mode. In addition to their interesting geometry, hypercube states display phase-space features much smaller than Planck's constant, and a large volume of Wigner negativity. We theoretically show that these features make hypercube states sensitive to displacements at extremely small scales in a way that is surprisingly robust to initial thermal occupation and to small separation of the superposed state components. In a high-temperature proof-of-principle optomechanics experiment we observe, and match to theory, the signature outer-edge vertex structure of hypercube states.

4.
Phys Rev Lett ; 121(9): 090503, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30230884

ABSTRACT

Quantum mechanics allows events to happen with no definite causal order: this can be verified by measuring a causal witness, in the same way that an entanglement witness verifies entanglement. Here, we realize a photonic quantum switch, where two operations A[over ^] and B[over ^] act in a quantum superposition of their two possible orders. The operations are on the transverse spatial mode of the photons; polarization coherently controls their order. Our implementation ensures that the operations cannot be distinguished by spatial or temporal position-further it allows qudit encoding in the target. We confirm our quantum switch has no definite causal order by constructing a causal witness and measuring its value to be 18 standard deviations beyond the definite-order bound.

5.
Phys Rev Lett ; 118(13): 130503, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-28409950

ABSTRACT

A boson-sampling device is a quantum machine expected to perform tasks intractable for a classical computer, yet requiring minimal nonclassical resources as compared to full-scale quantum computers. Photonic implementations to date employed sources based on inefficient processes that only simulate heralded single-photon statistics when strongly reducing emission probabilities. Boson sampling with only single-photon input has thus never been realized. Here, we report on a boson-sampling device operated with a bright solid-state source of single-photon Fock states with high photon-number purity: the emission from an efficient and deterministic quantum dot-micropillar system is demultiplexed into three partially indistinguishable single photons, with a single-photon purity 1-g^{(2)}(0) of 0.990±0.001, interfering in a linear optics network. Our demultiplexed source is between 1 and 2 orders of magnitude more efficient than current heralded multiphoton sources based on spontaneous parametric down-conversion, allowing us to complete the boson-sampling experiment faster than previous equivalent implementations.

6.
Phys Rev Lett ; 116(7): 070503, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26943521

ABSTRACT

Measuring entanglement is a demanding task that usually requires full tomography of a quantum system, involving a number of observables that grows exponentially with the number of parties. Recently, it was suggested that adding a single ancillary qubit would allow for the efficient measurement of concurrence, and indeed any entanglement monotone associated with antilinear operations. Here, we report on the experimental implementation of such a device-an embedding quantum simulator-in photonics, encoding the entangling dynamics of a bipartite system into a tripartite one. We show that bipartite concurrence can be efficiently extracted from the measurement of merely two observables, instead of 15, without full tomographic information.

7.
Phys Rev Lett ; 114(17): 173603, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25978233

ABSTRACT

Although the strengths of optical nonlinearities available experimentally have been rapidly increasing in recent years, significant challenges remain to using such nonlinearities to produce useful quantum devices such as efficient optical Bell state analyzers or universal quantum optical gates. Here we describe a new approach that avoids the current limitations by combining strong nonlinearities with active Gaussian operations in efficient protocols for Bell state analyzers and controlled-sign gates.

8.
Phys Rev Lett ; 114(9): 090402, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25793785

ABSTRACT

We fully characterize the reduced dynamics of an open quantum system initially correlated with its environment. Using a photonic qubit coupled to a simulated environment, we tomographically reconstruct a superchannel-a generalized channel that treats preparation procedures as inputs-from measurement of the system alone. We introduce novel quantitative measures for determining the strength of initial correlations, and to allow an experiment to be optimized in regard to its environment.

9.
Phys Rev Lett ; 112(14): 143603, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24765961

ABSTRACT

Holonomic phases--geometric and topological--have long been an intriguing aspect of physics. They are ubiquitous, ranging from observations in particle physics to applications in fault tolerant quantum computing. However, their exploration in particles sharing genuine quantum correlations lacks in observations. Here, we experimentally demonstrate the holonomic phase of two entangled photons evolving locally, which, nevertheless, gives rise to an entanglement-dependent phase. We observe its transition from geometric to topological as the entanglement between the particles is tuned from zero to maximal, and find this phase to behave more resiliently to evolution changes with increasing entanglement. Furthermore, we theoretically show that holonomic phases can directly quantify the amount of quantum correlations between the two particles. Our results open up a new avenue for observations of holonomic phenomena in multiparticle entangled quantum systems.

10.
Phys Rev Lett ; 110(25): 250501, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23829719

ABSTRACT

We demonstrate the unambiguous entangling operation of a photonic quantum-logic gate driven by an ultrabright solid-state single-photon source. Indistinguishable single photons emitted by a single semiconductor quantum dot in a micropillar optical cavity are used as target and control qubits. For a source brightness of 0.56 photons per pulse, the measured truth table has an overlap with the ideal case of 68.4±0.5%, increasing to 73.0±1.6% for a source brightness of 0.17 photons per pulse. The gate is entangling: At a source brightness of 0.48, the Bell-state fidelity is above the entangling threshold of 50% and reaches 71.0±3.6% for a source brightness of 0.15.

11.
Phys Rev Lett ; 111(23): 230504, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24476241

ABSTRACT

The key requirement for quantum networking is the distribution of entanglement between nodes. Surprisingly, entanglement can be generated across a network without direct transfer-or communication-of entanglement. In contrast to information gain, which cannot exceed the communicated information, the entanglement gain is bounded by the communicated quantum discord, a more general measure of quantum correlation that includes but is not limited to entanglement. Here, we experimentally entangle two communicating parties sharing three initially separable photonic qubits by exchange of a carrier photon that is unentangled with either party at all times. We show that distributing entanglement with separable carriers is resilient to noise and in some cases becomes the only way of distributing entanglement through noisy environments.

12.
Opt Express ; 19(23): 22698-708, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-22109151

ABSTRACT

We present a simple technique to reduce the emission rate of higher-order photon events from pulsed spontaneous parametric down-conversion. The technique uses extra-cavity control over a mode locked ultrafast laser to simultaneously increase repetition rate and reduce the energy of each pulse from the pump beam. We apply our scheme to a photonic quantum gate, showing improvements in the non-classical interference visibility for 2-photon and 4-photon experiments, and in the quantum-gate fidelity and entangled state production in the 2-photon case.

13.
Phys Rev Lett ; 106(10): 100401, 2011 Mar 11.
Article in English | MEDLINE | ID: mdl-21469772

ABSTRACT

The resources required to characterize the dynamics of engineered quantum systems--such as quantum computers and quantum sensors--grow exponentially with system size. Here we adapt techniques from compressive sensing to exponentially reduce the experimental configurations required for quantum process tomography. Our method is applicable to processes that are nearly sparse in a certain basis and can be implemented using only single-body preparations and measurements. We perform efficient, high-fidelity estimation of process matrices of a photonic two-qubit logic gate. The database is obtained under various decoherence strengths. Our technique is both accurate and noise robust, thus removing a key roadblock to the development and scaling of quantum technologies.


Subject(s)
Compressive Strength , Quantum Theory , Photons
14.
Proc Natl Acad Sci U S A ; 108(4): 1256-61, 2011 Jan 25.
Article in English | MEDLINE | ID: mdl-21220296

ABSTRACT

By weakly measuring the polarization of a photon between two strong polarization measurements, we experimentally investigate the correlation between the appearance of anomalous values in quantum weak measurements and the violation of realism and nonintrusiveness of measurements. A quantitative formulation of the latter concept is expressed in terms of a Leggett-Garg inequality for the outcomes of subsequent measurements of an individual quantum system. We experimentally violate the Leggett-Garg inequality for several measurement strengths. Furthermore, we experimentally demonstrate that there is a one-to-one correlation between achieving strange weak values and violating the Leggett-Garg inequality.


Subject(s)
Photons , Quantum Theory , Algorithms , Models, Theoretical , Physical Phenomena
15.
Nat Chem ; 2(2): 106-11, 2010 Feb.
Article in English | MEDLINE | ID: mdl-21124400

ABSTRACT

Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.


Subject(s)
Computers , Quantum Theory , Algorithms , Hydrogen/chemistry , Optical Phenomena
16.
Phys Rev Lett ; 104(15): 153602, 2010 Apr 16.
Article in English | MEDLINE | ID: mdl-20481989

ABSTRACT

Quantum walks have a host of applications, ranging from quantum computing to the simulation of biological systems. We present an intrinsically stable, deterministic implementation of discrete quantum walks with single photons in space. The number of optical elements required scales linearly with the number of steps. We measure walks with up to 6 steps and explore the quantum-to-classical transition by introducing tunable decoherence. Finally, we also investigate the effect of absorbing boundaries and show that decoherence significantly affects the probability of absorption.

17.
Phys Rev Lett ; 104(8): 080503, 2010 Feb 26.
Article in English | MEDLINE | ID: mdl-20366921

ABSTRACT

A goal of the emerging field of quantum control is to develop methods for quantum technologies to function robustly in the presence of noise. Central issues are the fundamental limitations on the available information about quantum systems and the disturbance they suffer in the process of measurement. In the context of a simple quantum control scenario-the stabilization of nonorthogonal states of a qubit against dephasing-we experimentally explore the use of weak measurements in feedback control. We find that, despite the intrinsic difficultly of implementing them, weak measurements allow us to control the qubit better in practice than is even theoretically possible without them. Our work shows that these more general quantum measurements can play an important role for feedback control of quantum systems.

18.
Phys Rev Lett ; 101(20): 200501, 2008 Nov 14.
Article in English | MEDLINE | ID: mdl-19113321

ABSTRACT

Deterministic quantum computation with one pure qubit (DQC1) is an efficient model of computation that uses highly mixed states. Unlike pure-state models, its power is not derived from the generation of a large amount of entanglement. Instead it has been proposed that other nonclassical correlations are responsible for the computational speedup, and that these can be captured by the quantum discord. In this Letter we implement DQC1 in an all-optical architecture, and experimentally observe the generated correlations. We find no entanglement, but large amounts of quantum discord-except in three cases where an efficient classical simulation is always possible. Our results show that even fully separable, highly mixed, states can contain intrinsically quantum mechanical correlations and that these could offer a valuable resource for quantum information technologies.

19.
Phys Rev Lett ; 100(6): 060504, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18352449

ABSTRACT

Quantum information carriers with higher dimension than the canonical qubit offer significant advantages. However, manipulating such systems is extremely difficult. We show how measurement-induced nonlinearities can dramatically extend the range of possible transforms on biphotonic qutrits-three-level quantum systems formed by the polarization of two photons in the same spatiotemporal mode. We fully characterize the biphoton-photon entanglement that underpins our technique, thereby realizing the first instance of qubit-qutrit entanglement. We discuss an extension of our technique to generate qutrit-qutrit entanglement and to manipulate any bosonic encoding of quantum information.

20.
Phys Rev Lett ; 98(20): 203602, 2007 May 18.
Article in English | MEDLINE | ID: mdl-17677697

ABSTRACT

We demonstrate a Fock-state filter which is capable of preferentially blocking single photons over photon pairs. The large conditional nonlinearities are based on higher-order quantum interference, using linear optics, an ancilla photon, and measurement. We demonstrate that the filter acts coherently by using it to convert unentangled photon pairs to a path-entangled state. We quantify the degree of entanglement by transforming the path information to polarization information; applying quantum state tomography we measure a tangle of T=(20+/-9)%.

SELECTION OF CITATIONS
SEARCH DETAIL
...