Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
bioRxiv ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38559081

ABSTRACT

Problem: All trainees, especially those from historically minoritized backgrounds, experience stresses that may reduce their continuation in science, technology, engineering, math, and medicine (STEMM) careers. The Johns Hopkins University School of Medicine is one of ~45 institutions with a National Institutes of Health funded Postbaccalaureate Research Education Program (PREP) that provides mentoring and a year of fulltime research to prepare students from historically excluded groups for graduate school. Having experienced the conflation of stresses during the COVID-19 pandemic and related shutdown, we realized our program lacked a component that explicitly helped PREP Scholars recognize and cope with non-academic stresses (financial, familial, social, mental) that might threaten their confidence and success as scientists and future in STEMM. Intervention: We developed an early-intervention program to help Scholars develop life-long skills to become successful and resilient scientists. We developed a year-long series comprised of 9 workshops focused on community, introspection, financial fitness, emotional intelligence, mental health, and soft-skills. We recruited and compensated a cohort of PhD students and postdoctoral fellows to serve as Peer Mentors, to provide a community and the safest 'space' for Scholars to discuss personal concerns. Peer Mentors were responsible for developing and facilitating these Community-Building Wellness Workshops (CBWW). Context: CBWW were created and exectued as part of the larger PREP program. Workshops included a PowerPoint presentation by Peer Mentors that featured several case studies that prompted discussion and provided time for small-group discussions between Scholars and Peer Mentors. We also included pre- and post-work for each workshop. These touch-points helped Scholars cultivate the habit of introspection. Impact: The CBWW exceeded our goals. Both Peer Mentors and Scholars experienced strong mutual support, and Scholars developed life-long skills. Notably, several Scholars who had been experiencing financial, mental or mentor-related stress immediately brought this to the attention of program leadership, allowing early and successful intervention. At the completion of CBWW, PREP Scholars reported implementing many workshop skills into practice, were reshaping their criteria for choosing future mentors, and evaluating career decisions. Strikingly, Peer Mentors found they also benefitted from the program as well, suggesting a potential larger scope for the role of CBWW in academia. Lessons Learned: Peer Mentors were essential in creating a safe supportive environment that facilitated discussions, self-reflection, and self-care. Providing fair compensation to Peer Mentors for their professional mentoring and teaching contributions was essential and contributed meaningfully to the positive energy and impact of this program.

2.
J Am Soc Mass Spectrom ; 35(2): 185-196, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38288997

ABSTRACT

Human immunodeficiency virus (HIV) infection continues to promote neurocognitive impairment, mood disorders, and brain atrophy, even in the modern era of viral suppression. Brain lipids are vulnerable to HIV-associated energetic strain and may contribute to HIV-associated neurologic dysfunction due to alterations in lipid breakdown and structural lipid composition. HIV neuropathology is region dependent, yet there has not been comprehensive characterization of the spatial heterogeneity of brain lipids during infection that possibly impacts neurologic function. To address this gap, we evaluated the spatial lipid distribution using matrix laser desorption/ionization imaging mass spectrometry (MALDI-IMS) across four brain regions (parietal cortex, midbrain, thalamus, and temporal cortex), as well as the kidney for a peripheral tissue control, in a simian immunodeficiency virus (SIV)-infected rhesus macaque treated with a course of antiretroviral therapies (ARTs). We assessed lipids indicative of fat breakdown [acylcarnitines (CARs)] and critical structural lipids [phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs)] across fatty acid chain lengths and degrees of unsaturation. CARs with very long-chain, polyunsaturated fatty acids (PUFAs) were more abundant across all brain regions than shorter chain, saturated, or monounsaturated species. We observed distinct brain lipid distribution patterns for the CARs and PCs. However, no clear expression patterns emerged for PEs. Surprisingly, the kidney was nearly devoid of ions corresponding to PUFAs common in brain. PEs and PCs with PUFAs had little intensity and less density than other species, and only one CAR species was observed in kidney at high intensity. Overall, our study demonstrates the stark variation in structural phospholipids and lipid-energetic intermediates present in the virally suppressed SIV-macaque brain. These findings may be useful for identifying regional vulnerabilities to damage due to brain lipid changes in people with HIV.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Humans , Simian Acquired Immunodeficiency Syndrome/metabolism , Simian Acquired Immunodeficiency Syndrome/pathology , Macaca mulatta , Brain/metabolism , Lipids
3.
Clin Epigenetics ; 15(1): 148, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37697338

ABSTRACT

BACKGROUND: Seasonal variations in environmental exposures at birth or during gestation are associated with numerous adult traits and health outcomes later in life. Whether DNA methylation (DNAm) plays a role in the molecular mechanisms underlying the associations between birth season and lifelong phenotypes remains unclear. METHODS: We carried out epigenome-wide meta-analyses within the Pregnancy And Childhood Epigenetic Consortium to identify associations of DNAm with birth season, both at differentially methylated probes (DMPs) and regions (DMRs). Associations were examined at two time points: at birth (21 cohorts, N = 9358) and in children aged 1-11 years (12 cohorts, N = 3610). We conducted meta-analyses to assess the impact of latitude on birth season-specific associations at both time points. RESULTS: We identified associations between birth season and DNAm (False Discovery Rate-adjusted p values < 0.05) at two CpGs at birth (winter-born) and four in the childhood (summer-born) analyses when compared to children born in autumn. Furthermore, we identified twenty-six differentially methylated regions (DMR) at birth (winter-born: 8, spring-born: 15, summer-born: 3) and thirty-two in childhood (winter-born: 12, spring and summer: 10 each) meta-analyses with few overlapping DMRs between the birth seasons or the two time points. The DMRs were associated with genes of known functions in tumorigenesis, psychiatric/neurological disorders, inflammation, or immunity, amongst others. Latitude-stratified meta-analyses [higher (≥ 50°N), lower (< 50°N, northern hemisphere only)] revealed differences in associations between birth season and DNAm by birth latitude. DMR analysis implicated genes with previously reported links to schizophrenia (LAX1), skin disorders (PSORS1C, LTB4R), and airway inflammation including asthma (LTB4R), present only at birth in the higher latitudes (≥ 50°N). CONCLUSIONS: In this large epigenome-wide meta-analysis study, we provide evidence for (i) associations between DNAm and season of birth that are unique for the seasons of the year (temporal effect) and (ii) latitude-dependent variations in the seasonal associations (spatial effect). DNAm could play a role in the molecular mechanisms underlying the effect of birth season on adult health outcomes.


Subject(s)
Asthma , DNA Methylation , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Carcinogenesis , Inflammation , Seasons
4.
mSystems ; 8(5): e0066123, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37610205

ABSTRACT

IMPORTANCE: We show that simultaneous study of stool and nasopharyngeal microbiome reveals divergent timing and patterns of maturation, suggesting that local mucosal factors may influence microbiome composition in the gut and respiratory system. Antibiotic exposure in early life as occurs commonly, may have an adverse effect on vaccine responsiveness. Abundance of gut and/or nasopharyngeal bacteria with the machinery to produce lipopolysaccharide-a toll-like receptor 4 agonist-may positively affect future vaccine protection, potentially by acting as a natural adjuvant. The increased levels of serum phenylpyruvic acid in infants with lower vaccine-induced antibody levels suggest an increased abundance of hydrogen peroxide, leading to more oxidative stress in low vaccine-responding infants.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Vaccines , Infant , Child , Humans , Metabolome , Vaccination
5.
J Am Chem Soc ; 145(30): 16289-16296, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37471577

ABSTRACT

The characterization of ligand binding modes is a crucial step in the drug discovery process and is especially important in campaigns arising from phenotypic screening, where the protein target and binding mode are unknown at the outset. Elucidation of target binding regions is typically achieved by X-ray crystallography or photoaffinity labeling (PAL) approaches; yet, these methods present significant challenges. X-ray crystallography is a mainstay technique that has revolutionized drug discovery, but in many cases structural characterization is challenging or impossible. PAL has also enabled binding site mapping with peptide- and amino-acid-level resolution; however, the stoichiometric activation mode can lead to poor signal and coverage of the resident binding pocket. Additionally, each PAL probe can have its own fragmentation pattern, complicating the analysis by mass spectrometry. Here, we establish a robust and general photocatalytic approach toward the mapping of protein binding sites, which we define as identification of residues proximal to the ligand binding pocket. By utilizing a catalytic mode of activation, we obtain sets of labeled amino acids in the proximity of the target protein binding site. We use this methodology to map, in vitro, the binding sites of six protein targets, including several kinases and molecular glue targets, and furthermore to investigate the binding site of the STAT3 inhibitor MM-206, a ligand with no known crystal structure. Finally, we demonstrate the successful mapping of drug binding sites in live cells. These results establish µMap as a powerful method for the generation of amino-acid- and peptide-level target engagement data.


Subject(s)
Peptides , Proteins , Ligands , Proteins/chemistry , Binding Sites , Peptides/chemistry , Protein Binding
6.
Cell Chem Biol ; 30(10): 1313-1322.e7, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37499664

ABSTRACT

Identifying virus-host interactions on the cell surface can improve our understanding of viral entry and pathogenesis. SARS-CoV-2, the causative agent of the COVID-19 disease, uses ACE2 as a receptor to enter cells. Yet the full repertoire of cell surface proteins that contribute to viral entry is unknown. We developed a photocatalyst-based viral-host protein microenvironment mapping platform (ViraMap) to probe the molecular neighborhood of the SARS-CoV-2 spike protein on the human cell surface. Application of ViraMap to ACE2-expressing cells captured ACE2, the established co-receptor NRP1, and several novel cell surface proteins. We systematically analyzed the relevance of these candidate proteins to SARS-CoV-2 entry by knockdown and overexpression approaches in pseudovirus and authentic infection models and identified PTGFRN and EFNB1 as bona fide viral entry factors. Our results highlight additional host targets that participate in SARS-CoV-2 infection and showcase ViraMap as a powerful platform for defining viral interactions on the cell surface.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus , Viral Proteins/metabolism , Protein Binding
7.
J Biol Chem ; 299(6): 104811, 2023 06.
Article in English | MEDLINE | ID: mdl-37172721

ABSTRACT

Proteasomes are large macromolecular complexes with multiple distinct catalytic activities that are each vital to human brain health and disease. Despite their importance, standardized approaches to investigate proteasomes have not been universally adapted. Here, we describe pitfalls and define straightforward orthogonal biochemical approaches essential to measure and understand changes in proteasome composition and activity in the mammalian central nervous system. Through our experimentation in the mammalian brain, we determined an abundance of catalytically active proteasomes exist with and without a 19S cap(s), the regulatory particle essential for ubiquitin-dependent degradation. Moreover, we learned that in-cell measurements using activity-based probes (ABPs) are more sensitive in determining the available activity of the 20S proteasome without the 19S cap and in measuring individual catalytic subunit activities of each ß subunit within all neuronal proteasomes. Subsequently, applying these tools to human brain samples, we were surprised to find that post-mortem tissue retained little to no 19S-capped proteasome, regardless of age, sex, or disease state. In comparing brain tissues (parahippocampal gyrus) from patients with Alzheimer's disease (AD) and unaffected individuals, the available 20S proteasome activity was significantly elevated in severe cases of AD, an observation not previously noted. Taken together, our study establishes standardized approaches for the comprehensive investigation of proteasomes in mammalian brain tissue, and we reveal new insight into brain proteasome biology.


Subject(s)
Brain , Proteasome Endopeptidase Complex , Animals , Humans , Brain/metabolism , Cytoplasm/metabolism , Mammals/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis
9.
iScience ; 26(2): 105948, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36756375

ABSTRACT

Sepsis is a life-threatening condition caused by a dysregulated host response to infection. Despite continued efforts to understand the pathophysiology of sepsis, no effective therapies are currently available. While singular components of the aberrant immune response have been investigated, comprehensive studies linking different data layers are lacking. Using an integrated systems immunology approach, we evaluated neutrophil phenotypes and concomitant changes in cytokines and metabolites in patients with sepsis. Our findings identify differentially expressed mature and immature neutrophil subsets in patients with sepsis. These subsets correlate with various proteins, metabolites, and lipids, including pentraxin-3, angiopoietin-2, and lysophosphatidylcholines, in patients with sepsis. These results enabled the construction of a statistical model based on weighted multi-omics linear regression analysis for sepsis biomarker identification. These findings could help inform early patient stratification and treatment options, and facilitate further mechanistic studies targeting the trifecta of surface marker expression, cytokines, and metabolites.

10.
Org Biomol Chem ; 21(1): 98-106, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36477737

ABSTRACT

Receptor-ligand interactions play essential signaling roles within intercellular contact regions. This is particularly important within the context of the immune synapse where protein communication at the surface of physically interacting T cells and antigen-presenting cells regulate downstream immune signaling responses. To identify protein microenvironments within immunological synapses, we combined a flavin-dependent photocatalytic labeling strategy with quantitative mass spectrometry-based proteomics. Using α-PD-L1 or α-PD-1 single-domain antibody (VHH)-based photocatalyst targeting modalities, we profiled protein microenvironments within the intercellular region of an immune synapse-forming co-culture system. In addition to enrichment of both PD-L1 and PD-1 with either targeting modality, we also observed enrichment of both known immune synapse residing receptor-ligand pairs and surface proteins, as well as previously unknown synapse residing proteins.


Subject(s)
B7-H1 Antigen , Programmed Cell Death 1 Receptor , Ligands , Proteomics , Catalysis
11.
Proc Natl Acad Sci U S A ; 119(34): e2208077119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35969791

ABSTRACT

Over half of new therapeutic approaches fail in clinical trials due to a lack of target validation. As such, the development of new methods to improve and accelerate the identification of cellular targets, broadly known as target ID, remains a fundamental goal in drug discovery. While advances in sequencing and mass spectrometry technologies have revolutionized drug target ID in recent decades, the corresponding chemical-based approaches have not changed in over 50 y. Consigned to outdated stoichiometric activation modes, modern target ID campaigns are regularly confounded by poor signal-to-noise resulting from limited receptor occupancy and low crosslinking yields, especially when targeting low abundance membrane proteins or multiple protein target engagement. Here, we describe a broadly general platform for photocatalytic small molecule target ID, which is founded upon the catalytic amplification of target-tag crosslinking through the continuous generation of high-energy carbene intermediates via visible light-mediated Dexter energy transfer. By decoupling the reactive warhead tag from the small molecule ligand, catalytic signal amplification results in unprecedented levels of target enrichment, enabling the quantitative target and off target ID of several drugs including (+)-JQ1, paclitaxel (Taxol), dasatinib (Sprycel), as well as two G-protein-coupled receptors-ADORA2A and GPR40.


Subject(s)
Drug Delivery Systems , Energy Transfer , Proteomics , Drug Discovery , Mass Spectrometry
12.
Mutat Res Rev Mutat Res ; 789: 108415, 2022.
Article in English | MEDLINE | ID: mdl-35690418

ABSTRACT

BACKGROUND: Among children, sex-specific differences in disease prevalence, age of onset, and susceptibility have been observed in health conditions including asthma, immune response, metabolic health, some pediatric and adult cancers, and psychiatric disorders. Epigenetic modifications such as DNA methylation may play a role in the sexual differences observed in diseases and other physiological traits. METHODS: We performed a meta-analysis of the association of sex and cord blood DNA methylation at over 450,000 CpG sites in 8438 newborns from 17 cohorts participating in the Pregnancy And Childhood Epigenetics (PACE) Consortium. We also examined associations of child sex with DNA methylation in older children ages 5.5-10 years from 8 cohorts (n = 4268). RESULTS: In newborn blood, sex was associated at Bonferroni level significance with differences in DNA methylation at 46,979 autosomal CpG sites (p < 1.3 × 10-7) after adjusting for white blood cell proportions and batch. Most of those sites had lower methylation levels in males than in females. Of the differentially methylated CpG sites identified in newborn blood, 68% (31,727) met look-up level significance (p < 1.1 × 10-6) in older children and had methylation differences in the same direction. CONCLUSIONS: This is a large-scale meta-analysis examining sex differences in DNA methylation in newborns and older children. Expanding upon previous studies, we replicated previous findings and identified additional autosomal sites with sex-specific differences in DNA methylation. Differentially methylated sites were enriched in genes involved in cancer, psychiatric disorders, and cardiovascular phenotypes.


Subject(s)
DNA Methylation , Epigenome , Adolescent , Child , DNA Methylation/genetics , Epigenesis, Genetic , Epigenomics , Female , Humans , Infant, Newborn , Male , Pregnancy , Sex Characteristics
13.
Nat Chem Biol ; 18(8): 850-858, 2022 08.
Article in English | MEDLINE | ID: mdl-35654846

ABSTRACT

The growing appreciation of immune cell-cell interactions within disease environments has led to extensive efforts to develop immunotherapies. However, characterizing complex cell-cell interfaces in high resolution remains challenging. Thus, technologies leveraging therapeutic-based modalities to profile intercellular environments offer opportunities to study cell-cell interactions with molecular-level insight. We introduce photocatalytic cell tagging (PhoTag) for interrogating cell-cell interactions using single-domain antibodies (VHHs) conjugated to photoactivatable flavin-based cofactors. Following irradiation with visible light, the flavin photocatalyst generates phenoxy radical tags for targeted labeling. Using this technology, we demonstrate selective synaptic labeling across the PD-1/PD-L1 axis in antigen-presenting cell-T cell systems. In combination with multiomics single-cell sequencing, we monitored interactions between peripheral blood mononuclear cells and Raji PD-L1 B cells, revealing differences in transient interactions with specific T cell subtypes. The utility of PhoTag in capturing cell-cell interactions will enable detailed profiling of intercellular communication across different biological systems.


Subject(s)
B7-H1 Antigen , Leukocytes, Mononuclear , Cell Communication , Flavins , Immunotherapy
14.
Elife ; 112022 03 08.
Article in English | MEDLINE | ID: mdl-35256050

ABSTRACT

Pregnancy 25-hydroxyvitamin D [25(OH)D] concentrations are associated with maternal and fetal health outcomes. Using physiological human placental perfusion and villous explants, we investigate the role of the placenta in regulating the relationships between maternal 25(OH)D and fetal physiology. We demonstrate active placental uptake of 25(OH)D3 by endocytosis, placental metabolism of 25(OH)D3 into 24,25-dihydroxyvitamin D3 and active 1,25-dihydroxyvitamin D [1,25(OH)2D3], with subsequent release of these metabolites into both the maternal and fetal circulations. Active placental transport of 25(OH)D3 and synthesis of 1,25(OH)2D3 demonstrate that fetal supply is dependent on placental function rather than simply the availability of maternal 25(OH)D3. We demonstrate that 25(OH)D3 exposure induces rapid effects on the placental transcriptome and proteome. These map to multiple pathways central to placental function and thereby fetal development, independent of vitamin D transfer. Our data suggest that the underlying epigenetic landscape helps dictate the transcriptional response to vitamin D treatment. This is the first quantitative study demonstrating vitamin D transfer and metabolism by the human placenta, with widespread effects on the placenta itself. These data demonstrate a complex interplay between vitamin D and the placenta and will inform future interventions using vitamin D to support fetal development and maternal adaptations to pregnancy.


Subject(s)
Placenta , Vitamin D , Calcifediol/metabolism , Female , Fetus/metabolism , Humans , Placenta/metabolism , Pregnancy , Vitamin D/metabolism , Vitamins/metabolism
15.
Vaccines (Basel) ; 9(11)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34835271

ABSTRACT

Emerging evidence demonstrates a connection between microbiome composition and suboptimal response to vaccines (vaccine hyporesponse). Harnessing the interaction between microbes and the immune system could provide novel therapeutic strategies for improving vaccine response. Currently we do not fully understand the mechanisms and dynamics by which the microbiome influences vaccine response. Using both mouse and non-human primate models, we report that short-term oral treatment with a single antibiotic (vancomycin) results in the disruption of the gut microbiome and this correlates with a decrease in systemic levels of antigen-specific IgG upon subsequent parenteral vaccination. We further show that recovery of microbial diversity before vaccination prevents antibiotic-induced vaccine hyporesponse, and that the antigen specific IgG response correlates with the recovery of microbiome diversity. RNA sequencing analysis of small intestine, spleen, whole blood, and secondary lymphoid organs from antibiotic treated mice revealed a dramatic impact on the immune system, and a muted inflammatory signature is correlated with loss of bacteria from Lachnospiraceae, Ruminococcaceae, and Clostridiaceae. These results suggest that microbially modulated immune pathways may be leveraged to promote vaccine response and will inform future vaccine design and development strategies.

16.
Stem Cell Reports ; 16(9): 2364-2378, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34450035

ABSTRACT

Donor-to-donor variability in primary human organoid cultures has not been well characterized. As these cultures contain multiple cell types, there is greater concern that variability could lead to increased noise. In this work we investigated donor-to-donor variability in human gut adult stem cell (ASC) organoids. We examined intestinal developmental pathways during culture differentiation in ileum- and colon-derived cultures established from multiple donors, showing that differentiation patterns were consistent among cultures. This finding indicates that donor-to-donor variability in this system remains at a manageable level. Intestinal metabolic activity was evaluated by targeted analysis of central carbon metabolites and by analyzing hormone production patterns. Both experiments demonstrated similar metabolic functions among donors. Importantly, this activity reflected intestinal biology, indicating that these ASC organoid cultures are appropriate for studying metabolic processes. This work establishes a framework for generating high-confidence data using human primary cultures through thorough characterization of variability.


Subject(s)
Biological Variation, Population , Cell Culture Techniques, Three Dimensional , Intestines/cytology , Organoids/cytology , Tissue Donors , Biomarkers , Carbon/metabolism , Cell Differentiation/genetics , Colon/metabolism , Energy Metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Fluorescent Antibody Technique , Gene Expression Profiling , Humans , Ilium/metabolism , Intestines/metabolism , Organoids/metabolism , Transcriptome
17.
J Biol Chem ; 297(1): 100830, 2021 07.
Article in English | MEDLINE | ID: mdl-34048714

ABSTRACT

Dietary lipid composition has been shown to impact brain morphology, brain development, and neurologic function. However, how diet uniquely regulates brain lipid homeostasis compared with lipid homeostasis in peripheral tissues remains largely uncharacterized. To evaluate the lipid response to dietary changes in the brain, we assessed actively translating mRNAs in astrocytes and neurons across multiple diets. From this data, ethanolamine phosphate phospholyase (Etnppl) was identified as an astrocyte-specific fasting-induced gene. Etnppl catabolizes phosphoethanolamine (PEtN), a prominent headgroup precursor in phosphatidylethanolamine (PE) also found in other classes of neurologically relevant lipid species. Altered Etnppl expression has also previously been associated with humans with mood disorders. We evaluated the relevance of Etnppl in maintaining brain lipid homeostasis by characterizing Etnppl across development and in coregulation with PEtN-relevant genes, as well as determining the impact to the brain lipidome after Etnppl loss. We found that Etnppl expression dramatically increased during a critical window of early brain development in mice and was also induced by glucocorticoids. Using a constitutive knockout of Etnppl (EtnpplKO), we did not observe robust changes in expression of PEtN-related genes. However, loss of Etnppl altered the phospholipid profile in the brain, resulting in increased total abundance of PE and in polyunsaturated fatty acids within PE and phosphatidylcholine species in the brain. Together, these data suggest that brain phospholipids are regulated by the phospholyase action of the enzyme Etnppl, which is induced by dietary fasting in astrocytes.


Subject(s)
Astrocytes/metabolism , Ethanolamines/metabolism , Homeostasis , Lipid Metabolism , Phosphorus-Oxygen Lyases/metabolism , Animals , Astrocytes/drug effects , Central Nervous System/cytology , Diet , Fasting , Fatty Acids/metabolism , Gene Expression Regulation, Developmental/drug effects , Glucocorticoids/pharmacology , Homeostasis/drug effects , Lipid Metabolism/drug effects , Membrane Lipids/metabolism , Mice , Oxidation-Reduction , Oxygen Consumption/drug effects , Phospholipids/metabolism , Receptors, Glucocorticoid/metabolism , Ribosomes/drug effects , Ribosomes/metabolism , Substrate Specificity/drug effects
18.
Am J Clin Nutr ; 114(1): 378-389, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33829235

ABSTRACT

BACKGROUND: Diet is a modifiable risk factor that may influence cognition in people with HIV. OBJECTIVES: We examined the association between dietary intake and cognition in women with HIV (WWH) and HIV-seronegative women. METHODS: An 18-item dietary National Cancer Institute screener was completed by 729 WWH and 346 HIV-seronegative Women's Interagency HIV Study participants. Daily intake frequencies of processed meats, sweet beverages, fish, whole milk, and vegetables were calculated. Participants completed biennial neuropsychological (NP) testing. NP domains included attention/working memory, executive function, processing speed, memory, learning, fluency, and motor function. NP impairment was defined as demographically adjusted T-scores (mean = 50; SD = 10) ≤40 at ≥1 visit after completing the dietary screener. Multivariable logistic regression, stratified by HIV serostatus, examined associations between intake frequency tertile (referent = lowest intake) and NP performance. RESULTS: Dietary intake frequencies of individual food line items were similar between WWH and HIV-seronegative women, except for sweet beverages, for which HIV-seronegative women reported higher intake frequencies than WWH (P values < 0.05). In WWH, multivariable-adjusted models indicated higher odds of NP impairment with higher intake frequencies of processed meat [P = 0.006; ORupper tertile = 1.91 (95% CI: 1.23-2.95; P = 0.003); ORmiddle tertile = 1.66 (95% CI: 1.14-2.42; P = 0.01)], sweet beverages [P = 0.02; ORupper tertile = 1.75 (95% CI: 1.17-2.64; P = 0.007)], fish [P = 0.01; ORupper tertile = 1.70 (95% CI: 1.10-2.64; P = 0.02)], and whole milk [P = 0.029; ORupper tertile = 1.66 (95% CI: 1.14-2.42; P = 0.008)]. Lower odds of NP impairment [P = 0.005; ORupper tertile = 0.65 (95% CI: 0.45-0.95; P = 0.02); ORmiddle tertile = 0.42 (95% CI: 0.24-0.73; P = 0.002)] were associated with higher vegetable intakes. In HIV-seronegative women, multivariable-adjusted models did not show associations between food line items/diet quality score and NP outcomes. CONCLUSIONS: Intakes of processed meat, sweet beverages, whole milk, fish, and vegetables may be associated with NP functions among WWH. Associations among WWH are not directly comparable to those among HIV-seronegative women, because models were conducted on each group separately given controls for HIV-specific covariates in WWH. Further studies are needed using more rigorous dietary assessment methods and lengthier longitudinal follow-ups.


Subject(s)
Cognition , Diet , HIV Infections/complications , HIV-1 , Adult , Cohort Studies , Female , Humans , Prospective Studies , Risk Factors
19.
AIDS Res Hum Retroviruses ; 37(2): 109-121, 2021 02.
Article in English | MEDLINE | ID: mdl-33045840

ABSTRACT

Despite the considerable progress that has been made in identifying cellular factors and pathways that contribute to establishment and maintenance of the latent HIV reservoir, it remains the major obstacle to eradicating this virus. Most recently, noncoding genes have been implicated in regulation of HIV expression. In this study, small RNA sequencing was used to profile expression of microRNAs (miRNAs) in a primary CD4+ T cell in vitro model of HIV latency. Previously, we have shown that protein-coding genes dysregulated in this model were enriched for the p53 signaling pathway, which was confirmed experimentally. We further found a link between p53 signaling and dysregulated long noncoding RNAs. In this study, we hypothesized that miRNAs may provide an additional level of regulation of the p53 signaling pathway during HIV latency. Twenty-six miRNAs were identified to be dysregulated in our latency model. A subset of these miRNAs was validated by real-time quantitative polymerase chain reaction. Predicted messenger RNA (mRNA) targets and cellular pathways enriched for mRNA targets were identified using several analytical methods. Our analyses showed that many protein-coding genes and pathways targeted by dysregulated miRNAs have relevance to regulation of HIV expression or establishment of HIV latency. The p53 signaling pathway was found among pathways that were targeted by dysregulated miRNAs at a greater level than expected by chance. This study provides a mechanistic insight into regulation of the p53 pathway through miRNAs that may contribute to the establishment of latency.


Subject(s)
HIV Infections , HIV-1 , MicroRNAs , RNA, Long Noncoding , Gene Expression Profiling , HIV-1/genetics , Humans , MicroRNAs/genetics , Virus Latency
20.
JCI Insight ; 5(18)2020 09 17.
Article in English | MEDLINE | ID: mdl-32780727

ABSTRACT

BACKGROUNDTuberculosis (TB) kills more people than any other infection, and new diagnostic tests to identify active cases are required. We aimed to discover and verify novel markers for TB in nondepleted plasma.METHODSWe applied an optimized quantitative proteomics discovery methodology based on multidimensional and orthogonal liquid chromatographic separation combined with high-resolution mass spectrometry to study nondepleted plasma of 11 patients with active TB compared with 10 healthy controls. Prioritized candidates were verified in independent UK (n = 118) and South African cohorts (n = 203).RESULTSWe generated the most comprehensive TB plasma proteome to date, profiling 5022 proteins spanning 11 orders-of-magnitude concentration range with diverse biochemical and molecular properties. We analyzed the predominantly low-molecular weight subproteome, identifying 46 proteins with significantly increased and 90 with decreased abundance (peptide FDR ≤ 1%, q ≤ 0.05). Verification was performed for novel candidate biomarkers (CFHR5, ILF2) in 2 independent cohorts. Receiver operating characteristics analyses using a 5-protein panel (CFHR5, LRG1, CRP, LBP, and SAA1) exhibited discriminatory power in distinguishing TB from other respiratory diseases (AUC = 0.81).CONCLUSIONWe report the most comprehensive TB plasma proteome to date, identifying novel markers with verification in 2 independent cohorts, leading to a 5-protein biosignature with potential to improve TB diagnosis. With further development, these biomarkers have potential as a diagnostic triage test.FUNDINGColciencias, Medical Research Council, Innovate UK, NIHR, Academy of Medical Sciences, Program for Advanced Research Capacities for AIDS, Wellcome Centre for Infectious Diseases Research.


Subject(s)
Biomarkers/blood , Mycobacterium tuberculosis/metabolism , Proteome/analysis , Tuberculosis, Pulmonary/blood , Tuberculosis, Pulmonary/epidemiology , Case-Control Studies , Female , Follow-Up Studies , Gene Regulatory Networks , Humans , Male , Peru/epidemiology , Prospective Studies , Proteome/metabolism , ROC Curve , South Africa/epidemiology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...