Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Pharmacol Toxicol ; 17(1): 20, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27132129

ABSTRACT

BACKGROUND: Humans are exposed to nitrate predominantly through diet with peak plasma concentrations within an hour after ingestion, but additional exposure is obtained from the environment, and minimally through de novo synthesis. Higher nitrate consumption has been associated with methemoglobinemia, spontaneous abortions, atherosclerosis, myocardial ischemia, septic and distressed lung, inflammatory bowel disease, amyotrophic lateral sclerosis, and neural tube defects. However, skeletal muscle development has not been examined. METHODS: C2C12 skeletal muscle cell cultures were maintained, myoblasts were fused into myotubes, and then cultures were exposed to motor neuron derived agrin to enhance acetylcholine receptor (AChR) clustering. Untreated cultures were compared with cultures exposed to sodium nitrate at concentrations ranging from 10 ng/mL-100 µg/mL. RESULTS: The results reported here demonstrate that 1 µg/mL sodium nitrate was sufficient to decrease the frequency of agrin-induced AChR clustering without affecting myotube formation. In addition, concentrations of sodium nitrate of 1 µg/mL or 100 µg/mL decreased gene expression of the myogenic transcription factor myogenin and AChR in correlation with the agrin-induced AChR clustering data. CONCLUSIONS: These results reveal that sodium nitrate decreases the frequency of agrin-induced AChR clustering by a mechanism that includes myogenin and AChR gene expression. As a consequence sodium nitrate may pose a risk for skeletal muscle development and subsequent neuromuscular synapse formation in humans.


Subject(s)
Agrin/pharmacology , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Nitrates/pharmacology , Receptors, Cholinergic/metabolism , Agrin/antagonists & inhibitors , Animals , Cells, Cultured , Cluster Analysis , Dose-Response Relationship, Drug , Mice , Myoblasts, Skeletal/drug effects , Myoblasts, Skeletal/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...