Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(16): 160401, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37154634

ABSTRACT

From an open system perspective non-Markovian effects due to a nearby bath or neighboring qubits are dynamically equivalent. However, there is a conceptual distinction to account for: neighboring qubits may be controlled. We combine recent advances in non-Markovian quantum process tomography with the framework of classical shadows to characterize spatiotemporal quantum correlations. Observables here constitute operations applied to the system, where the free operation is the maximally depolarizing channel. Using this as a causal break, we systematically erase causal pathways to narrow down the progenitors of temporal correlations. We show that one application of this is to filter out the effects of crosstalk and probe only non-Markovianity from an inaccessible bath. It also provides a lens on spatiotemporally spreading correlated noise throughout a lattice from common environments. We demonstrate both examples on synthetic data. Owing to the scaling of classical shadows, we can erase arbitrarily many neighboring qubits at no extra cost. Our procedure is thus efficient and amenable to systems even with all-to-all interactions.

2.
Nat Commun ; 11(1): 6301, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33298929

ABSTRACT

In the scale-up of quantum computers, the framework underpinning fault-tolerance generally relies on the strong assumption that environmental noise affecting qubit logic is uncorrelated (Markovian). However, as physical devices progress well into the complex multi-qubit regime, attention is turning to understanding the appearance and mitigation of correlated - or non-Markovian - noise, which poses a serious challenge to the progression of quantum technology. This error type has previously remained elusive to characterisation techniques. Here, we develop a framework for characterising non-Markovian dynamics in quantum systems and experimentally test it on multi-qubit superconducting quantum devices. Where noisy processes cannot be accounted for using standard Markovian techniques, our reconstruction predicts the behaviour of the devices with an infidelity of 10-3. Our results show this characterisation technique leads to superior quantum control and extension of coherence time by effective decoupling from the non-Markovian environment. This framework, validated by our results, is applicable to any controlled quantum device and offers a significant step towards optimal device operation and noise reduction.

3.
Phys Rev Lett ; 123(21): 210401, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31809126

ABSTRACT

Dynamical decoupling (DD) is a powerful method for controlling arbitrary open quantum systems. In quantum spin control, DD generally involves a sequence of timed spin flips (π rotations) arranged to either average out or selectively enhance coupling to the environment. Experimentally, errors in the spin flips are inevitably introduced, motivating efforts to optimize error-robust DD. Here we invert this paradigm: by introducing particular control "errors" in standard DD, namely, a small constant deviation from perfect π rotations (pulse adjustments), we show we obtain protocols that retain the advantages of DD while introducing the capabilities of quantum state readout and polarization transfer. We exploit this nuclear quantum state selectivity on an ensemble of nitrogen-vacancy centers in diamond to efficiently polarize the ^{13}C quantum bath. The underlying physical mechanism is generic and paves the way to systematic engineering of pulse-adjusted protocols with nuclear state selectivity for quantum control applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...