Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Nat Commun ; 15(1): 4601, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834558

ABSTRACT

Precise neurostimulation can revolutionize therapies for neurological disorders. Electrode-based stimulation devices face challenges in achieving precise and consistent targeting due to the immune response and the limited penetration of electrical fields. Ultrasound can aid in energy propagation, but transcranial ultrasound stimulation in the deep brain has limited spatial resolution caused by bone and tissue scattering. Here, we report an implantable piezoelectric ultrasound stimulator (ImPULS) that generates an ultrasonic focal pressure of 100 kPa to modulate the activity of neurons. ImPULS is a fully-encapsulated, flexible piezoelectric micromachined ultrasound transducer that incorporates a biocompatible piezoceramic, potassium sodium niobate [(K,Na)NbO3]. The absence of electrochemically active elements poses a new strategy for achieving long-term stability. We demonstrated that ImPULS can i) excite neurons in a mouse hippocampal slice ex vivo, ii) activate cells in the hippocampus of an anesthetized mouse to induce expression of activity-dependent gene c-Fos, and iii) stimulate dopaminergic neurons in the substantia nigra pars compacta to elicit time-locked modulation of nigrostriatal dopamine release. This work introduces a non-genetic ultrasound platform for spatially-localized neural stimulation and exploration of basic functions in the deep brain.


Subject(s)
Deep Brain Stimulation , Hippocampus , Ultrasonic Waves , Animals , Deep Brain Stimulation/instrumentation , Deep Brain Stimulation/methods , Mice , Mice, Inbred C57BL , Dopaminergic Neurons , Male , Dopamine/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Substantia Nigra , Neurons/physiology , Transducers
2.
Article in English | MEDLINE | ID: mdl-38415197

ABSTRACT

Over the past two decades Biomedical Engineering has emerged as a major discipline that bridges societal needs of human health care with the development of novel technologies. Every medical institution is now equipped at varying degrees of sophistication with the ability to monitor human health in both non-invasive and invasive modes. The multiple scales at which human physiology can be interrogated provide a profound perspective on health and disease. We are at the nexus of creating "avatars" (herein defined as an extension of "digital twins") of human patho/physiology to serve as paradigms for interrogation and potential intervention. Motivated by the emergence of these new capabilities, the IEEE Engineering in Medicine and Biology Society, the Departments of Biomedical Engineering at Johns Hopkins University and Bioengineering at University of California at San Diego sponsored an interdisciplinary workshop to define the grand challenges that face biomedical engineering and the mechanisms to address these challenges. The Workshop identified five grand challenges with cross-cutting themes and provided a roadmap for new technologies, identified new training needs, and defined the types of interdisciplinary teams needed for addressing these challenges. The themes presented in this paper include: 1) accumedicine through creation of avatars of cells, tissues, organs and whole human; 2) development of smart and responsive devices for human function augmentation; 3) exocortical technologies to understand brain function and treat neuropathologies; 4) the development of approaches to harness the human immune system for health and wellness; and 5) new strategies to engineer genomes and cells.

3.
bioRxiv ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-37905071

ABSTRACT

Calcium imaging allows recording from hundreds of neurons in vivo with the ability to resolve single cell activity. Evaluating and analyzing neuronal responses, while also considering all dimensions of the data set to make specific conclusions, is extremely difficult. Often, descriptive statistics are used to analyze these forms of data. These analyses, however, remove variance by averaging the responses of single neurons across recording sessions, or across combinations of neurons, to create single quantitative metrics, losing the temporal dynamics of neuronal activity, and their responses relative to each other. Dimensionally Reduction (DR) methods serve as a good foundation for these analyses because they reduce the dimensions of the data into components, while still maintaining the variance. Non-negative Matrix Factorization (NMF) is an especially promising DR analysis method for analyzing activity recorded in calcium imaging because of its mathematical constraints, which include positivity and linearity. We adapt NMF for our analyses and compare its performance to alternative dimensionality reduction methods on both artificial and in vivo data. We find that NMF is well-suited for analyzing calcium imaging recordings, accurately capturing the underlying dynamics of the data, and outperforming alternative methods in common use.

4.
Exp Neurol ; 371: 114572, 2024 01.
Article in English | MEDLINE | ID: mdl-37852467

ABSTRACT

Cuprizone (CPZ)-induced alterations in axonal myelination are associated with a period of neuronal hyperexcitability and increased activity of hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels in the thalamocortical (TC) system. Substances used for the treatment of multiple sclerosis (MS) have been shown to normalize neuronal excitability in CPZ-treated mice. Therefore, we aimed to examine the effects of diroximel fumarate (DRF) and the sphingosine 1-phospate receptor (S1PR) modulator siponimod on action potential firing and the inward current (Ih) carried by HCN ion channels in naive conditions and during different stages of de- and remyelination. Here, DRF application reduced Ih current density in ex vivo patch clamp recordings from TC neurons of the ventrobasal thalamic complex (VB), thereby counteracting the increase of Ih during early remyelination. Siponimod reduced Ih in VB neurons under control conditions but had no effect in neurons of the auditory cortex (AU). Furthermore, siponimod increased and decreased AP firing properties of neurons in VB and AU, respectively. Computational modeling revealed that both DRF and siponimod influenced thalamic bursting during early remyelination by delaying the onset and decreasing the interburst frequency. Thus, substances used in MS treatment normalize excitability in the TC system by influencing AP firing and Ih.


Subject(s)
Neuroprotective Agents , Remyelination , Mice , Animals , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Models, Theoretical
5.
Elife ; 122023 Oct 16.
Article in English | MEDLINE | ID: mdl-37842914

ABSTRACT

Analysis of neuronal activity in the hippocampus of behaving animals has revealed cells acting as 'Time Cells', which exhibit selective spiking patterns at specific time intervals since a triggering event, and 'Distance Cells', which encode the traversal of specific distances. Other neurons exhibit a combination of these features, alongside place selectivity. This study aims to investigate how the task performed by animals during recording sessions influences the formation of these representations. We analyzed data from a treadmill running study conducted by Kraus et al., 2013, in which rats were trained to run at different velocities. The rats were recorded in two trial contexts: a 'fixed time' condition, where the animal ran on the treadmill for a predetermined duration before proceeding, and a 'fixed distance' condition, where the animal ran a specific distance on the treadmill. Our findings indicate that the type of experimental condition significantly influenced the encoding of hippocampal cells. Specifically, distance-encoding cells dominated in fixed-distance experiments, whereas time-encoding cells dominated in fixed-time experiments. These results underscore the flexible coding capabilities of the hippocampus, which are shaped by over-representation of salient variables associated with reward conditions.


Subject(s)
Hippocampus , Neurons , Rats , Animals , Hippocampus/physiology , Neurons/physiology
6.
Elife ; 122023 07 04.
Article in English | MEDLINE | ID: mdl-37401757

ABSTRACT

The theta rhythm, a quasi-periodic 4-10 Hz oscillation, is observed during memory processing in the hippocampus, with different phases of theta hypothesized to separate independent streams of information related to the encoding and recall of memories. At the cellular level, the discovery of hippocampal memory cells (engram neurons), as well as the modulation of memory recall through optogenetic activation of these cells, has provided evidence that certain memories are stored, in part, in a sparse ensemble of neurons in the hippocampus. In previous research, however, engram reactivation has been carried out using open-loop stimulation at fixed frequencies; the relationship between engram neuron reactivation and ongoing network oscillations has not been taken into consideration. To address this concern, we implemented a closed-loop reactivation of engram neurons that enabled phase-specific stimulation relative to theta oscillations in the local field potential in CA1. Using this real-time approach, we tested the impact of activating dentate gyrus engram neurons during the peak (encoding phase) and trough (recall phase) of theta oscillations. Consistent with previously hypothesized functions of theta oscillations in memory function, we show that stimulating dentate gyrus engram neurons at the trough of theta is more effective in eliciting behavioral recall than either fixed-frequency stimulation or stimulation at the peak of theta. Moreover, phase-specific trough stimulation is accompanied by an increase in the coupling between gamma and theta oscillations in CA1 hippocampus. Our results provide a causal link between phase-specific activation of engram cells and the behavioral expression of memory.


Subject(s)
Hippocampus , Neurons , Mice , Animals , Mice, Inbred C57BL , Neurons/physiology , Hippocampus/physiology , Memory/physiology , Theta Rhythm/physiology , Dentate Gyrus/physiology
7.
PLoS Comput Biol ; 18(12): e1010094, 2022 12.
Article in English | MEDLINE | ID: mdl-36455063

ABSTRACT

Theta and gamma oscillations in the hippocampus have been hypothesized to play a role in the encoding and retrieval of memories. Recently, it was shown that an intrinsic fast gamma mechanism in medial entorhinal cortex can be recruited by optogenetic stimulation at theta frequencies, which can persist with fast excitatory synaptic transmission blocked, suggesting a contribution of interneuronal network gamma (ING). We calibrated the passive and active properties of a 100-neuron model network to capture the range of passive properties and frequency/current relationships of experimentally recorded PV+ neurons in the medial entorhinal cortex (mEC). The strength and probabilities of chemical and electrical synapses were also calibrated using paired recordings, as were the kinetics and short-term depression (STD) of the chemical synapses. Gap junctions that contribute a noticeable fraction of the input resistance were required for synchrony with hyperpolarizing inhibition; these networks exhibited theta-nested high frequency oscillations similar to the putative ING observed experimentally in the optogenetically-driven PV-ChR2 mice. With STD included in the model, the network desynchronized at frequencies above ~200 Hz, so for sufficiently strong drive, fast oscillations were only observed before the peak of the theta. Because hyperpolarizing synapses provide a synchronizing drive that contributes to robustness in the presence of heterogeneity, synchronization decreases as the hyperpolarizing inhibition becomes weaker. In contrast, networks with shunting inhibition required non-physiological levels of gap junctions to synchronize using conduction delays within the measured range.


Subject(s)
Depression , Sexually Transmitted Diseases , Mice , Animals , Interneurons/physiology , Synaptic Transmission/physiology , Gap Junctions/physiology , Hippocampus/physiology
8.
Commun Biol ; 5(1): 1009, 2022 09 26.
Article in English | MEDLINE | ID: mdl-36163262

ABSTRACT

The hippocampus is involved in processing a variety of mnemonic computations specifically the spatiotemporal components and emotional dimensions of contextual memory. Recent studies have demonstrated cellular heterogeneity along the hippocampal axis. The ventral hippocampus has been shown to be important in the processing of emotion and valence. Here, we combine transgenic and all-virus based activity-dependent tagging strategies to visualize multiple valence-specific engrams in the vHPC and demonstrate two partially segregated cell populations and projections that respond to appetitive and aversive experiences. Next, using RNA sequencing and DNA methylation sequencing approaches, we find that vHPC appetitive and aversive engram cells display different transcriptional programs and DNA methylation landscapes compared to a neutral engram population. Additionally, optogenetic manipulation of tagged cell bodies in vHPC is not sufficient to drive appetitive or aversive behavior in real-time place preference, stimulation of tagged vHPC terminals projecting to the amygdala and nucleus accumbens (NAc), but not the prefrontal cortex (PFC), showed the capacity drive preference and avoidance. These terminals also were able to change their capacity to drive behavior. We conclude that the vHPC contains genetically, cellularly, and behaviorally segregated populations of cells processing appetitive and aversive memory engrams.


Subject(s)
Hippocampus , Memory , Amygdala/physiology , Hippocampus/physiology , Memory/physiology , Optogenetics , Prefrontal Cortex/physiology
9.
Int J Mol Sci ; 23(11)2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35682964

ABSTRACT

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system that is characterized by the progressive loss of oligodendrocytes and myelin and is associated with thalamic dysfunction. Cuprizone (CPZ)-induced general demyelination in rodents is a valuable model for studying different aspects of MS pathology. CPZ feeding is associated with the altered distribution and expression of different ion channels along neuronal somata and axons. However, it is largely unknown whether the copper chelator CPZ directly influences ion channels. Therefore, we assessed the effects of different divalent cations (copper; zinc) and trace metal chelators (EDTA; Tricine; the water-soluble derivative of CPZ, BiMPi) on hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that are major mediators of thalamic function and pathology. In addition, alterations of HCN channels induced by CPZ treatment and MS-related proinflammatory cytokines (IL-1ß; IL-6; INF-α; INF-ß) were characterized in C57Bl/6J mice. Thus, the hyperpolarization-activated inward current (Ih) was recorded in thalamocortical (TC) neurons and heterologous expression systems (mHCN2 expressing HEK cells; hHCN4 expressing oocytes). A number of electrophysiological characteristics of Ih (potential of half-maximal activation (V0.5); current density; activation kinetics) were unchanged following the extracellular application of trace metals and divalent cation chelators to native neurons, cell cultures or oocytes. Mice were fed a diet containing 0.2% CPZ for 35 days, resulting in general demyelination in the brain. Withdrawal of CPZ from the diet resulted in rapid remyelination, the effects of which were assessed at three time points after stopping CPZ feeding (Day1, Day7, Day25). In TC neurons, Ih was decreased on Day1 and Day25 and revealed a transient increased availability on Day7. In addition, we challenged naive TC neurons with INF-α and IL-1ß. It was found that Ih parameters were differentially altered by the application of the two cytokines to thalamic cells, while IL-1ß increased the availability of HCN channels (depolarized V0.5; increased current density) and the excitability of TC neurons (depolarized resting membrane potential (RMP); increased the number of action potentials (APs); produced a larger voltage sag; promoted higher input resistance; increased the number of burst spikes; hyperpolarized the AP threshold), INF-α mediated contrary effects. The effect of cytokine modulation on thalamic bursting was further assessed in horizontal slices and a computational model of slow thalamic oscillations. Here, IL-1ß and INF-α increased and reduced oscillatory bursting, respectively. We conclude that HCN channels are not directly modulated by trace metals and divalent cation chelators but are subject to modulation by different MS-related cytokines.


Subject(s)
Demyelinating Diseases , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Animals , Cations, Divalent , Chelating Agents/pharmacology , Copper , Cytokines , Demyelinating Diseases/chemically induced , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Mice , Mice, Inbred C57BL
10.
eNeuro ; 9(1)2022.
Article in English | MEDLINE | ID: mdl-35105656

ABSTRACT

Parvalbumin-positive (Pvalb+) and somatostatin-positive (Sst+) cells are the two largest subgroups of inhibitory interneurons. Studies in visual cortex indicate that synaptic connections between Pvalb+ cells are common while connections between Sst+ interneurons have not been observed. The inhibitory connectivity and kinetics of these two interneuron subpopulations, however, have not been characterized in medial entorhinal cortex (mEC). Using fluorescence-guided paired recordings in mouse brain slices from interneurons and excitatory cells in layer 2/3 mEC, we found that, unlike neocortical measures, Sst+ cells inhibit each other, albeit with a lower probability than Pvalb+ cells (18% vs 36% for unidirectional connections). Gap junction connections were also more frequent between Pvalb+ cells than between Sst+ cells. Pvalb+ cells inhibited each other with larger conductances, smaller decay time constants, and shorter delays. Similarly, synaptic connections between Pvalb+ and excitatory cells were more likely and expressed faster decay times and shorter delays than those between Sst+ and excitatory cells. Inhibitory cells exhibited smaller synaptic decay time constants between interneurons than on their excitatory targets. Inhibition between interneurons also depressed faster, and to a greater extent. Finally, inhibition onto layer 2 pyramidal and stellate cells originating from Pvalb+ interneurons were very similar, with no significant differences in connection likelihood, inhibitory amplitude, and decay time. A model of short-term depression fitted to the data indicates that recovery time constants for refilling the available pool are in the range of 50-150 ms and that the fraction of the available pool released on each spike is in the range 0.2-0.5.


Subject(s)
Entorhinal Cortex , Parvalbumins , Animals , Entorhinal Cortex/metabolism , Interneurons/physiology , Kinetics , Mice , Parvalbumins/metabolism , Pyramidal Cells/physiology , Somatostatin/metabolism
11.
Light Sci Appl ; 10(1): 143, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34257273

ABSTRACT

Neuromodulation at high spatial resolution poses great significance in advancing fundamental knowledge in the field of neuroscience and offering novel clinical treatments. Here, we developed a tapered fiber optoacoustic emitter (TFOE) generating an ultrasound field with a high spatial precision of 39.6 µm, enabling optoacoustic activation of single neurons or subcellular structures, such as axons and dendrites. Temporally, a single acoustic pulse of sub-microsecond converted by the TFOE from a single laser pulse of 3 ns is shown as the shortest acoustic stimuli so far for successful neuron activation. The precise ultrasound generated by the TFOE enabled the integration of the optoacoustic stimulation with highly stable patch-clamp recording on single neurons. Direct measurements of the electrical response of single neurons to acoustic stimulation, which is difficult for conventional ultrasound stimulation, have been demonstrated. By coupling TFOE with ex vivo brain slice electrophysiology, we unveil cell-type-specific responses of excitatory and inhibitory neurons to acoustic stimulation. These results demonstrate that TFOE is a non-genetic single-cell and sub-cellular modulation technology, which could shed new insights into the mechanism of ultrasound neurostimulation.

12.
J Neurosci Methods ; 351: 109064, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33387574

ABSTRACT

BACKGROUND: Fluorescence imaging is a widely used technique that permits for cell-type-specific recording from hundreds of neurons simultaneously. Often, to obtain cell-type-specific recordings from more than one cell type, researchers add an additional fluorescent protein to mark a second neuronal subpopulation. Currently, however, no consensus exists on the best expression method for multiple fluorescent proteins. NEW METHOD: We optimized the coexpression of two fluorescent proteins across multiple brain regions and mouse lines. RESULTS: The single-virus method, a viral injection in a double transgenic reporter mouse, results in limited fluorescent coexpression. In contrast the double-virus method, injecting a mixture of two viruses in a Cre driver mouse, results in up to 70 % coexpression of the fluorescent markers in vitro. Using the double-virus method allows for population activity recording and neuronal subpopulation determination. COMPARISON WITH EXISTING METHOD: The standard for expressing two fluorescent proteins is to use a double transgenic reporter mouse with a single viral injection. Injecting two viruses into a Cre driver mouse resulted in significantly higher coexpression compared to the standard method. This result generalized to multiple brain regions and mouse lines in vitro, as well as in vivo. CONCLUSION: Efficiently coexpressing multiple fluorescent proteins provides population activity while identifying a neuronal subpopulation of interest. The improved coexpression is applicable to a wide breadth of experiments, ranging from engram investigation to voltage imaging.


Subject(s)
Brain , Neurons , Animals , Brain/diagnostic imaging , Brain/metabolism , Fluorescence , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Luminescent Proteins/genetics , Mice , Mice, Transgenic , Neurons/metabolism , Optical Imaging
13.
J Neurosci ; 40(50): 9576-9588, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33158963

ABSTRACT

Single-cell analysis is revealing increasing diversity in gene expression profiles among brain cells. Traditional promotor-based viral gene expression techniques, however, cannot capture the growing variety among single cells. We demonstrate a novel viral gene expression strategy to target cells with specific miRNA expression using miRNA-guided neuron tags (mAGNET). We designed mAGNET viral vectors containing a CaMKIIα promoter and microRNA-128 (miR-128) binding sites, and labeled CaMKIIα+ cells with naturally low expression of miR-128 (Lm128C cells) in male and female mice. Although CaMKIIα has traditionally been considered as an excitatory neuron marker, our single-cell sequencing results reveal that Lm128C cells are CaMKIIα+ inhibitory neurons of parvalbumin or somatostatin subtypes. Further evaluation of the physiological properties of Lm128C cell in brain slices showed that Lm128C cells exhibit elevated membrane excitability, with biophysical properties closely resembling those of fast-spiking interneurons, consistent with previous transcriptomic findings of miR-128 in regulating gene networks that govern membrane excitability. To further demonstrate the utility of this new viral expression strategy, we expressed GCaMP6f in Lm128C cells in the superficial layers of the motor cortex and performed in vivo calcium imaging in mice during locomotion. We found that Lm128C cells exhibit elevated calcium event rates and greater intrapopulation correlation than the overall CaMKIIα+ cells during movement. In summary, the miRNA-based viral gene targeting strategy described here allows us to label a sparse population of CaMKIIα+ interneurons for functional studies, providing new capabilities to investigate the relationship between gene expression and physiological properties in the brain.SIGNIFICANCE STATEMENT We report the discovery of a class of CaMKIIα+ cortical interneurons, labeled via a novel miRNA-based viral gene targeting strategy, combinatorial to traditional promoter-based strategies. The fact that we found a small, yet distinct, population of cortical inhibitory neurons that express CaMKIIα demonstrates that CaMKIIα is not as specific for excitatory neurons as commonly believed. As single-cell sequencing tools are providing increasing insights into the gene expression diversity of neurons, including miRNA profile data, we expect that the miRNA-based gene targeting strategy presented here can help delineate many neuron populations whose physiological properties can be readily related to the miRNA gene regulatory networks.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Gene Targeting , Interneurons/metabolism , MicroRNAs/genetics , Motor Cortex/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Female , Genetic Vectors , Male , Mice , MicroRNAs/metabolism
14.
iScience ; 23(4): 100974, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32299055

ABSTRACT

Precise measurement of action potentials (APs) is needed to observe electrical activity and cellular communication within cardiac tissue. Voltage-sensitive dyes (VSDs) are traditionally used to measure cardiac APs; however, they require acute chemical addition that prevents chronic imaging. Genetically encoded voltage indicators (GEVIs) enable long-term studies of APs without the need of chemical additions, but current GEVIs used in cardiac tissue exhibit poor kinetics and/or low signal to noise (SNR). Here, we demonstrate the use of Archon1, a recently developed GEVI, in hiPSC-derived cardiomyocytes (CMs). When expressed in CMs, Archon1 demonstrated fast kinetics comparable with patch-clamp electrophysiology and high SNR significantly greater than the VSD Di-8-ANEPPS. Additionally, Archon1 enabled monitoring of APs across multiple cells simultaneously in 3D cardiac tissues. These results highlight Archon1's capability to investigate the electrical activity of CMs in a variety of applications and its potential to probe functionally complex in vitro models, as well as in vivo systems.

15.
Ann Biomed Eng ; 48(3): 905-912, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32026231

ABSTRACT

This paper provides a synopsis of discussions related to biomedical engineering core curricula that occurred at the Fourth BME Education Summit held at Case Western Reserve University in Cleveland, Ohio in May 2019. This summit was organized by the Council of Chairs of Bioengineering and Biomedical Engineering, and participants included over 300 faculty members from 100+ accredited undergraduate programs. This discussion focused on six key questions: QI: Is there a core curriculum, and if so, what are its components? QII: How does our purported core curriculum prepare students for careers, particularly in industry? QIII: How does design distinguish BME/BIOE graduates from other engineers? QIV: What is the state of engineering analysis and systems-level modeling in BME/BIOE curricula? QV: What is the role of data science in BME/BIOE undergraduate education? QVI: What core experimental skills are required for BME/BIOE undergrads? s. Indeed, BME/BIOI core curricula exists and has matured to emphasize interdisciplinary topics such as physiology, instrumentation, mechanics, computer programming, and mathematical modeling. Departments demonstrate their own identities by highlighting discipline-specific sub-specialties. In addition to technical competence, Industry partners most highly value our students' capacity for problem solving and communication. As such, BME/BIOE curricula includes open-ended projects that address unmet patient and clinician needs as primary methods to prepare graduates for careers in industry. Culminating senior design experiences distinguish BME/BIOE graduates through their development of client-centered engineering solutions to healthcare problems. Finally, the overall BME/BIOE curriculum is not stagnant-it is clear that data science will become an ever-important element of our students' training and that new methods to enhance student engagement will be of pedagogical importance as we embark on the next decade.


Subject(s)
Biomedical Engineering/education , Curriculum , Data Science , Humans , Students , Universities
17.
Exp Neurol ; 326: 113196, 2020 04.
Article in English | MEDLINE | ID: mdl-31935368

ABSTRACT

The persistent unresponsiveness of many of the acquired epilepsies to traditional antiseizure medications has motivated the search for prophylactic drug therapies that could reduce the incidence of epilepsy in this at risk population. These studies are based on the idea of a period of epileptogenesis that can follow a wide variety of brain injuries. Epileptogenesis is hypothesized to involve changes in the brain not initially associated with seizures, but which result finally in seizure prone networks. Understanding these changes will provide crucial clues for the development of prophylactic drugs. Using the repeated low-dose kainate rat model of epilepsy, we have studied the period of epileptogenesis following status epilepticus, verifying the latent period with continuous EEG monitoring. Focusing on ultrastructural properties of the tripartite synapse in the CA1 region of hippocampus we found increased astrocyte ensheathment around both the presynaptic and postsynaptic elements, reduced synaptic AMPA receptor subunit and perisynaptic astrocyte GLT-1 expression, and increased number of docked vesicles at the presynaptic terminal. These findings were associated with an increase in frequency of the mEPSCs observed in patch clamp recordings of CA1 pyramidal cells. The results suggest a complex set of changes, some of which have been associated with increasingly excitable networks such as increased vesicles and mEPSC frequency, and some associated with compensatory mechanisms, such as increased astrocyte ensheathment. The diversity of ultrastructural and electrophysiological changes observed during epileptogeneiss suggests that potential drug targets for this period should be broadened to include all components of the tripartite synapse.


Subject(s)
Epilepsy, Temporal Lobe/pathology , Synapses/pathology , Animals , Astrocytes/pathology , CA1 Region, Hippocampal/pathology , Electroencephalography , Epilepsy, Temporal Lobe/chemically induced , Excitatory Amino Acid Agonists , Excitatory Postsynaptic Potentials/drug effects , Kainic Acid , Male , Rats , Rats, Sprague-Dawley , Receptors, AMPA/biosynthesis , Status Epilepticus/chemically induced , Status Epilepticus/pathology , Synapses/ultrastructure
18.
Hippocampus ; 29(12): 1178-1189, 2019 12.
Article in English | MEDLINE | ID: mdl-31301195

ABSTRACT

Numerous synaptic and intrinsic membrane mechanisms have been proposed for generating oscillatory activity in the hippocampus. Few studies, however, have directly measured synaptic conductances and membrane properties during oscillations. The time course and relative contribution of excitatory and inhibitory synaptic conductances, as well as the role of intrinsic membrane properties in amplifying synaptic inputs, remains unclear. To address this issue, we used an isolated whole hippocampal preparation that generates autonomous low-frequency oscillations near the theta range. Using 2-photon microscopy and expression of genetically encoded fluorophores, we obtained on-cell and whole-cell patch recordings of pyramidal cells and fast-firing interneurons in the distal subiculum. Pyramidal cell and interneuron spiking shared similar phase-locking to local field potential oscillations. In pyramidal cells, spiking resulted from a concomitant and balanced increase in excitatory and inhibitory synaptic currents. In contrast, interneuron spiking was driven almost exclusively by excitatory synaptic current. Thus, similar to tightly balanced networks underlying hippocampal gamma oscillations and ripples, balanced synaptic inputs in the whole hippocampal preparation drive highly phase-locked spiking at the peak of slower network oscillations.


Subject(s)
Excitatory Postsynaptic Potentials/physiology , Gamma Rhythm/physiology , Hippocampus/physiology , Synapses/physiology , Synaptic Transmission/physiology , Animals , Female , Hippocampus/cytology , Interneurons/physiology , Male , Mice , Mice, Transgenic , Organ Culture Techniques , Pyramidal Cells/physiology
19.
J Neurosci ; 39(12): 2221-2237, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30655351

ABSTRACT

Under awake and idling conditions, spontaneous intracellular membrane voltage is characterized by large, synchronous, low-frequency fluctuations. Although these properties reflect correlations in synaptic inputs, intrinsic membrane properties often indicate voltage-dependent changes in membrane resistance and time constant values that can amplify and help to generate low-frequency voltage fluctuations. The specific contribution of intrinsic and synaptic factors to the generation of spontaneous fluctuations, however, remains poorly understood. Using visually guided intracellular recordings of somatosensory layer 2/3 pyramidal cells and interneurons in awake male and female mice, we measured the spectrum and size of voltage fluctuation and intrinsic cellular properties at different voltages. In both cell types, depolarizing neurons increased the size of voltage fluctuations. Amplitude changes scaled with voltage-dependent changes in membrane input resistance. Because of the small membrane time constants observed in both pyramidal cells and interneuron cell bodies, the low-frequency content of membrane fluctuations reflects correlations in the synaptic current inputs rather than significant filtering associated with membrane capacitance. Further, blocking synaptic inputs minimally altered somatic membrane resistance and time constant values. Overall, these results indicate that spontaneous synaptic inputs generate a low-conductance state in which the amplitude, but not frequency structure, is influenced by intrinsic membrane properties.SIGNIFICANCE STATEMENT In the absence of sensory drive, cortical activity in awake animals is associated with self-generated and seemingly random membrane voltage fluctuations characterized by large amplitude and low frequency. Partially, these properties reflect correlations in synaptic input. Nonetheless, neurons express voltage-dependent intrinsic properties that can potentially influence the amplitude and frequency of spontaneous activity. Using visually guided intracellular recordings of cortical neurons in awake mice, we measured the voltage dependence of spontaneous voltage fluctuations and intrinsic membrane properties. We show that voltage-dependent changes in membrane resistance amplify synaptic activity, whereas the frequency of voltage fluctuations reflects correlations in synaptic inputs. Last, synaptic activity has a small impact on intrinsic membrane properties in both pyramidal cells and interneurons.


Subject(s)
Interneurons/physiology , Membrane Potentials/physiology , Pyramidal Cells/physiology , Somatosensory Cortex/physiology , Animals , Female , Male , Mice, Inbred C57BL , Motor Activity/physiology , Vibrissae/physiology
20.
Hippocampus ; 29(9): 773-786, 2019 09.
Article in English | MEDLINE | ID: mdl-30417958

ABSTRACT

Sharp wave-ripples (140-220 Hz) are patterns of brain activity observed in the local field potential of the hippocampus which are present during memory consolidation. As rodents switch from memory consolidation to memory encoding behaviors, cholinergic inputs to the hippocampus from neurons in the medial septum-diagonal band of Broca cause a marked reduction in ripple incidence. The mechanism for this disruption in ripple power is not fully understood. In isolated neurons, the major effect of cholinergic input on hippocampal neurons is depolarization of the membrane potential, which affects both hippocampal pyramidal neurons and inhibitory interneurons. Using an existing model of ripple-frequency oscillations that includes both pyramidal neurons and interneurons, we investigated the mechanism whereby depolarizing inputs to these neurons can affect ripple power and frequency. We observed that ripple power and frequency are maintained, as long as inputs to pyramidal neurons and interneurons are balanced. Preferential drive to pyramidal neurons or interneurons, however, affects ripple power and can disrupt ripple oscillations by pushing ripple frequency higher or lower. Thus, an imbalance in drive to pyramidal neurons and interneurons provides a means whereby cholinergic input can suppress hippocampal ripples.


Subject(s)
Hippocampus/physiology , Neural Inhibition/physiology , Parasympathetic Nervous System/physiology , Algorithms , Electroencephalography , Electrophysiological Phenomena/physiology , Evoked Potentials , Humans , Interneurons/physiology , Membrane Potentials/physiology , Memory Consolidation/physiology , Models, Neurological , Neurons/physiology , Pyramidal Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...