Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
Sci Transl Med ; 15(726): eadh9902, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38091406

ABSTRACT

New drugs for visceral leishmaniasis that are safe, low cost, and adapted to the field are urgently required. Despite concerted efforts over the last several years, the number of new chemical entities that are suitable for clinical development for the treatment of Leishmania remains low. Here, we describe the discovery and preclinical development of DNDI-6174, an inhibitor of Leishmania cytochrome bc1 complex activity that originated from a phenotypically identified pyrrolopyrimidine series. This compound fulfills all target candidate profile criteria required for progression into preclinical development. In addition to good metabolic stability and pharmacokinetic properties, DNDI-6174 demonstrates potent in vitro activity against a variety of Leishmania species and can reduce parasite burden in animal models of infection, with the potential to approach sterile cure. No major flags were identified in preliminary safety studies, including an exploratory 14-day toxicology study in the rat. DNDI-6174 is a cytochrome bc1 complex inhibitor with acceptable development properties to enter preclinical development for visceral leishmaniasis.


Subject(s)
Leishmaniasis, Visceral , Leishmaniasis , Rats , Animals , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Disease Models, Animal
2.
Cell Chem Biol ; 30(10): 1191-1210.e20, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37557181

ABSTRACT

KAT6A, and its paralog KAT6B, are histone lysine acetyltransferases (HAT) that acetylate histone H3K23 and exert an oncogenic role in several tumor types including breast cancer where KAT6A is frequently amplified/overexpressed. However, pharmacologic targeting of KAT6A to achieve therapeutic benefit has been a challenge. Here we describe identification of a highly potent, selective, and orally bioavailable KAT6A/KAT6B inhibitor CTx-648 (PF-9363), derived from a benzisoxazole series, which demonstrates anti-tumor activity in correlation with H3K23Ac inhibition in KAT6A over-expressing breast cancer. Transcriptional and epigenetic profiling studies show reduced RNA Pol II binding and downregulation of genes involved in estrogen signaling, cell cycle, Myc and stem cell pathways associated with CTx-648 anti-tumor activity in ER-positive (ER+) breast cancer. CTx-648 treatment leads to potent tumor growth inhibition in ER+ breast cancer in vivo models, including models refractory to endocrine therapy, highlighting the potential for targeting KAT6A in ER+ breast cancer.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Histones/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Signal Transduction , Cell Line, Tumor
3.
J Med Chem ; 64(17): 12582-12602, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34437804

ABSTRACT

A phenotypic high-throughput screen allowed discovery of quinazolinone-2-carboxamide derivatives as a novel antimalarial scaffold. Structure-activity relationship studies led to identification of a potent inhibitor 19f, 95-fold more potent than the original hit compound, active against laboratory-resistant strains of malaria. Profiling of 19f suggested a fast in vitro killing profile. In vivo activity in a murine model of human malaria in a dose-dependent manner constitutes a concomitant benefit.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Malaria, Falciparum/drug therapy , Quinazolinones/pharmacology , Administration, Oral , Animals , Humans , Mice , Molecular Structure , Plasmodium falciparum/drug effects , Quinazolinones/chemistry , Structure-Activity Relationship
4.
J Med Chem ; 64(9): 6085-6136, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33876936

ABSTRACT

Dihydroorotate dehydrogenase (DHODH) has been clinically validated as a target for the development of new antimalarials. Experience with clinical candidate triazolopyrimidine DSM265 (1) suggested that DHODH inhibitors have great potential for use in prophylaxis, which represents an unmet need in the malaria drug discovery portfolio for endemic countries, particularly in areas of high transmission in Africa. We describe a structure-based computationally driven lead optimization program of a pyrrole-based series of DHODH inhibitors, leading to the discovery of two candidates for potential advancement to preclinical development. These compounds have improved physicochemical properties over prior series frontrunners and they show no time-dependent CYP inhibition, characteristic of earlier compounds. Frontrunners have potent antimalarial activity in vitro against blood and liver schizont stages and show good efficacy in Plasmodium falciparum SCID mouse models. They are equally active against P. falciparum and Plasmodium vivax field isolates and are selective for Plasmodium DHODHs versus mammalian enzymes.


Subject(s)
Antimalarials/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Pyrroles/pharmacology , Animals , Antimalarials/chemistry , Dihydroorotate Dehydrogenase , Enzyme Inhibitors/chemistry , Mice , Plasmodium falciparum/drug effects , Pyrroles/chemistry , Structure-Activity Relationship
5.
ACS Infect Dis ; 7(6): 1680-1689, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33929818

ABSTRACT

Prolyl-tRNA synthetase (PRS) is a clinically validated antimalarial target. Screening of a set of PRS ATP-site binders, initially designed for human indications, led to identification of 1-(pyridin-4-yl)pyrrolidin-2-one derivatives representing a novel antimalarial scaffold. Evidence designates cytoplasmic PRS as the drug target. The frontrunner 1 and its active enantiomer 1-S exhibited low-double-digit nanomolar activity against resistant Plasmodium falciparum (Pf) laboratory strains and development of liver schizonts. No cross-resistance with strains resistant to other known antimalarials was noted. In addition, a similar level of growth inhibition was observed against clinical field isolates of Pf and P. vivax. The slow killing profile and the relative high propensity to develop resistance in vitro (minimum inoculum resistance of 8 × 105 parasites at a selection pressure of 3 × IC50) constitute unfavorable features for treatment of malaria. However, potent blood stage and antischizontal activity are compelling for causal prophylaxis which does not require fast onset of action. Achieving sufficient on-target selectivity appears to be particularly challenging and should be the primary focus during the next steps of optimization of this chemical series. Encouraging preliminary off-target profile and oral efficacy in a humanized murine model of Pf malaria allowed us to conclude that 1-(pyridin-4-yl)pyrrolidin-2-one derivatives represent a promising starting point for the identification of novel antimalarial prophylactic agents that selectively target Plasmodium PRS.


Subject(s)
Amino Acyl-tRNA Synthetases , Antimalarials , Malaria, Falciparum , Malaria , Animals , Antimalarials/pharmacology , Humans , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Mice , Plasmodium falciparum
6.
Bioorg Med Chem ; 37: 116116, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33799173

ABSTRACT

The K+-sparing diuretic amiloride elicits anticancer activities in multiple animal models. During our recent medicinal chemistry campaign aiming to identify amiloride analogs with improved properties for potential use in cancer, we discovered novel 6-(hetero)aryl-substituted amiloride and 5-(N,N-hexamethylene)amiloride (HMA) analogs with up to 100-fold higher potencies than the parent compounds against urokinase plasminogen activator (uPA), one of amiloride's putative anticancer targets, and no diuretic or antikaliuretic effects. Here, we report the systematic evaluation of structure-property relationships (lipophilicity, aqueous solubility and in vitro metabolic stability in human and mouse liver microsomes) in twelve matched pair analogs selected from our 6-substituted amiloride and HMA libraries. Mouse plasma stability, plasma protein binding, Caco-2 cell permeability, cardiac ion channel activity and pharmacokinetics in mice (PO and IV) and rats (IV) are described alongside amiloride and HMA comparators for a subset of the four most promising matched-pair analogs. The findings combined with earlier uPA activity/selectivity and other data ultimately drove selection of two analogs (AA1-39 and AA1-41) that showed efficacy in separate mouse cancer metastasis studies.


Subject(s)
Amiloride/analogs & derivatives , Amiloride/pharmacology , Antineoplastic Agents/pharmacology , Amiloride/pharmacokinetics , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Caco-2 Cells , Drug Screening Assays, Antitumor , Female , Humans , Male , Mice, Inbred BALB C , Microsomes, Liver/drug effects , Molecular Structure , Rats, Sprague-Dawley , Structure-Activity Relationship
7.
J Med Chem ; 64(7): 4150-4162, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33759519

ABSTRACT

Novel 3,3'-disubstituted-5,5'-bi(1,2,4-triazine) compounds with potent in vitro activity against Plasmodium falciparum parasites were recently discovered. To improve the pharmacokinetic properties of the triazine derivatives, a new structure-activity relationship (SAR) investigation was initiated with a focus on enhancing the metabolic stability of lead compounds. These efforts led to the identification of second-generation highly potent antimalarial bis-triazines, exemplified by triazine 23, which exhibited significantly improved in vitro metabolic stability (8 and 42 µL/min/mg protein in human and mouse liver microsomes). The disubstituted triazine dimer 23 was also observed to suppress parasitemia in the Peters 4-day test with a mean ED50 value of 1.85 mg/kg/day and exhibited a fast-killing profile, revealing a new class of orally available antimalarial compounds of considerable interest.


Subject(s)
Antimalarials/therapeutic use , Malaria/drug therapy , Triazines/therapeutic use , Animals , Antimalarials/chemical synthesis , Antimalarials/pharmacokinetics , Caco-2 Cells , Female , Humans , Male , Mice, Inbred NOD , Mice, SCID , Microsomes, Liver/drug effects , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Rats, Sprague-Dawley , Structure-Activity Relationship , Triazines/chemical synthesis , Triazines/pharmacokinetics
8.
Malar J ; 20(1): 107, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33608015

ABSTRACT

BACKGROUND: The ongoing global malaria eradication campaign requires development of potent, safe, and cost-effective drugs lacking cross-resistance with existing chemotherapies. One critical step in drug development is selecting a suitable clinical candidate from late leads. The process used to select the clinical candidate SJ733 from two potent dihydroisoquinolone (DHIQ) late leads, SJ733 and SJ311, based on their physicochemical, pharmacokinetic (PK), and toxicity profiles is described. METHODS: The compounds were tested to define their physicochemical properties including kinetic and thermodynamic solubility, partition coefficient, permeability, ionization constant, and binding to plasma proteins. Metabolic stability was assessed in both microsomes and hepatocytes derived from mice, rats, dogs, and humans. Cytochrome P450 inhibition was assessed using recombinant human cytochrome enzymes. The pharmacokinetic profiles of single intravenous or oral doses were investigated in mice, rats, and dogs. RESULTS: Although both compounds displayed similar physicochemical properties, SJ733 was more permeable but metabolically less stable than SJ311 in vitro. Single dose PK studies of SJ733 in mice, rats, and dogs demonstrated appreciable oral bioavailability (60-100%), whereas SJ311 had lower oral bioavailability (mice 23%, rats 40%) and higher renal clearance (10-30 fold higher than SJ733 in rats and dogs), suggesting less favorable exposure in humans. SJ311 also displayed a narrower range of dose-proportional exposure, with plasma exposure flattening at doses above 200 mg/kg. CONCLUSION: SJ733 was chosen as the candidate based on a more favorable dose proportionality of exposure and stronger expectation of the ability to justify a strong therapeutic index to regulators.


Subject(s)
Antimalarials/pharmacology , Isoquinolines/pharmacology , Animals , Antimalarials/pharmacokinetics , Antimalarials/toxicity , Biological Availability , Dogs , Hepatocytes/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Heterocyclic Compounds, 4 or More Rings/pharmacology , Heterocyclic Compounds, 4 or More Rings/toxicity , Humans , Isoquinolines/pharmacokinetics , Isoquinolines/toxicity , Mice , Microsomes, Liver/drug effects , Rats
9.
Eur J Med Chem ; 207: 112849, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33007723

ABSTRACT

Phenotypic screening of a 900 compound library of antitubercular nitroimidazole derivatives related to pretomanid against the protozoan parasite Trypanosoma cruzi (the causative agent for Chagas disease) identified several structurally diverse hits with an unknown mode of action. Following initial profiling, a first proof-of-concept in vivo study was undertaken, in which once daily oral dosing of a 7-substituted 2-nitroimidazooxazine analogue suppressed blood parasitemia to low or undetectable levels, although sterile cure was not achieved. Limited hit expansion studies alongside counter-screening of new compounds targeted at visceral leishmaniasis laid the foundation for a more in-depth assessment of the best leads, focusing on both drug-like attributes (solubility, metabolic stability and safety) and maximal killing of the parasite in a shorter timeframe. Comparative appraisal of one preferred lead (58) in a chronic infection mouse model, monitored by highly sensitive bioluminescence imaging, provided the first definitive evidence of (partial) curative efficacy with this promising nitroimidazooxazine class.


Subject(s)
Chagas Disease/drug therapy , Nitroimidazoles/chemistry , Nitroimidazoles/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Drug Evaluation, Preclinical , Mice , Nitroimidazoles/therapeutic use , Trypanocidal Agents/therapeutic use , Trypanosoma cruzi/physiology
10.
J Med Chem ; 63(9): 4929-4956, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32248693

ABSTRACT

Malaria puts at risk nearly half the world's population and causes high mortality in sub-Saharan Africa, while drug resistance threatens current therapies. The pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) is a validated target for malaria treatment based on our finding that triazolopyrimidine DSM265 (1) showed efficacy in clinical studies. Herein, we describe optimization of a pyrrole-based series identified using a target-based DHODH screen. Compounds with nanomolar potency versus Plasmodium DHODH and Plasmodium parasites were identified with good pharmacological properties. X-ray studies showed that the pyrroles bind an alternative enzyme conformation from 1 leading to improved species selectivity versus mammalian enzymes and equivalent activity on Plasmodium falciparum and Plasmodium vivax DHODH. The best lead DSM502 (37) showed in vivo efficacy at similar levels of blood exposure to 1, although metabolic stability was reduced. Overall, the pyrrole-based DHODH inhibitors provide an attractive alternative scaffold for the development of new antimalarial compounds.


Subject(s)
Antimalarials/therapeutic use , Enzyme Inhibitors/therapeutic use , Malaria, Falciparum/drug therapy , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Pyrroles/therapeutic use , Animals , Antimalarials/chemical synthesis , Antimalarials/metabolism , Antimalarials/pharmacokinetics , Cell Line, Tumor , Crystallography, X-Ray , Dihydroorotate Dehydrogenase , Dogs , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Female , Humans , Male , Mice, SCID , Microsomes, Liver/metabolism , Molecular Structure , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Parasitic Sensitivity Tests , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Plasmodium vivax/drug effects , Plasmodium vivax/enzymology , Protein Binding , Pyrroles/chemical synthesis , Pyrroles/metabolism , Pyrroles/pharmacokinetics , Rats , Structure-Activity Relationship
11.
J Med Chem ; 63(7): 3723-3736, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32134263

ABSTRACT

Semisynthetic artemisinins and other bioactive peroxides are best known for their powerful antimalarial activities, and they also show substantial activity against schistosomes-another hemoglobin-degrading pathogen. Building on this discovery, we now describe the initial structure-activity relationship (SAR) of antischistosomal ozonide carboxylic acids OZ418 (2) and OZ165 (3). Irrespective of lipophilicity, these ozonide weak acids have relatively low aqueous solubilities and high protein binding values. Ozonides with para-substituted carboxymethoxy and N-benzylglycine substituents had high antischistosomal efficacies. It was possible to increase solubility, decrease protein binding, and maintain the high antischistosomal activity in mice infected with juvenile and adult Schistosoma mansoni by incorporating a weak base functional group in these compounds. In some cases, adding polar functional groups and heteroatoms to the spiroadamantane substructure increased the solubility and metabolic stability, but in all cases decreased the antischistosomal activity.


Subject(s)
Adamantane/therapeutic use , Carboxylic Acids/therapeutic use , Heterocyclic Compounds, 1-Ring/therapeutic use , Schistosomicides/therapeutic use , Spiro Compounds/therapeutic use , Adamantane/analogs & derivatives , Adamantane/pharmacokinetics , Adamantane/toxicity , Animals , Carboxylic Acids/chemical synthesis , Carboxylic Acids/pharmacokinetics , Carboxylic Acids/toxicity , Cell Line, Tumor , Female , HEK293 Cells , Heterocyclic Compounds, 1-Ring/chemical synthesis , Heterocyclic Compounds, 1-Ring/pharmacokinetics , Heterocyclic Compounds, 1-Ring/toxicity , Humans , Mice , Molecular Structure , Parasitic Sensitivity Tests , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/drug therapy , Schistosomicides/chemical synthesis , Schistosomicides/pharmacokinetics , Schistosomicides/toxicity , Spiro Compounds/chemical synthesis , Spiro Compounds/pharmacokinetics , Spiro Compounds/toxicity , Structure-Activity Relationship
12.
J Med Chem ; 63(9): 4655-4684, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32118427

ABSTRACT

A high-throughput screen designed to discover new inhibitors of histone acetyltransferase KAT6A uncovered CTX-0124143 (1), a unique aryl acylsulfonohydrazide with an IC50 of 1.0 µM. Using this acylsulfonohydrazide as a template, we herein disclose the results of our extensive structure-activity relationship investigations, which resulted in the discovery of advanced compounds such as 55 and 80. These two compounds represent significant improvements on our recently reported prototypical lead WM-8014 (3) as they are not only equivalently potent as inhibitors of KAT6A but are less lipophilic and significantly more stable to microsomal degradation. Furthermore, during this process, we discovered a distinct structural subclass that contains key 2-fluorobenzenesulfonyl and phenylpyridine motifs, culminating in the discovery of WM-1119 (4). This compound is a highly potent KAT6A inhibitor (IC50 = 6.3 nM; KD = 0.002 µM), competes with Ac-CoA by binding to the Ac-CoA binding site, and has an oral bioavailability of 56% in rats.


Subject(s)
Antineoplastic Agents/pharmacology , Histone Acetyltransferases/antagonists & inhibitors , Hydrazines/pharmacology , Sulfonamides/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Biological Availability , Drug Discovery , Drug Stability , Humans , Hydrazines/chemical synthesis , Hydrazines/chemistry , Hydrazines/pharmacokinetics , Male , Mice , Microsomes, Liver/metabolism , Molecular Structure , Rats, Sprague-Dawley , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/metabolism , Sulfonamides/pharmacokinetics
13.
Malar J ; 19(1): 1, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31898492

ABSTRACT

BACKGROUND: Modelling and simulation are being increasingly utilized to support the discovery and development of new anti-malarial drugs. These approaches require reliable in vitro data for physicochemical properties, permeability, binding, intrinsic clearance and cytochrome P450 inhibition. This work was conducted to generate an in vitro data toolbox using standardized methods for a set of 45 anti-malarial drugs and to assess changes in physicochemical properties in relation to changing target product and candidate profiles. METHODS: Ionization constants were determined by potentiometric titration and partition coefficients were measured using a shake-flask method. Solubility was assessed in biorelevant media and permeability coefficients and efflux ratios were determined using Caco-2 cell monolayers. Binding to plasma and media proteins was measured using either ultracentrifugation or rapid equilibrium dialysis. Metabolic stability and cytochrome P450 inhibition were assessed using human liver microsomes. Sample analysis was conducted by LC-MS/MS. RESULTS: Both solubility and fraction unbound decreased, and permeability and unbound intrinsic clearance increased, with increasing Log D7.4. In general, development compounds were somewhat more lipophilic than legacy drugs. For many compounds, permeability and protein binding were challenging to assess and both required the use of experimental conditions that minimized the impact of non-specific binding. Intrinsic clearance in human liver microsomes was varied across the data set and several compounds exhibited no measurable substrate loss under the conditions used. Inhibition of cytochrome P450 enzymes was minimal for most compounds. CONCLUSIONS: This is the first data set to describe in vitro properties for 45 legacy and development anti-malarial drugs. The studies identified several practical methodological issues common to many of the more lipophilic compounds and highlighted areas which require more work to customize experimental conditions for compounds being designed to meet the new target product profiles. The dataset will be a valuable tool for malaria researchers aiming to develop PBPK models for the prediction of human PK properties and/or drug-drug interactions. Furthermore, generation of this comprehensive data set within a single laboratory allows direct comparison of properties across a large dataset and evaluation of changing property trends that have occurred over time with changing target product and candidate profiles.


Subject(s)
Antimalarials/metabolism , Antimalarials/pharmacology , Drug Development , Drug Discovery , Antimalarials/blood , Antimalarials/standards , Caco-2 Cells , Chromatography, Liquid , Cytochrome P-450 Enzyme System/metabolism , Drug Interactions , Humans , Kinetics , Microsomes, Liver , Permeability , Protein Binding , Solubility , Tandem Mass Spectrometry
14.
J Med Chem ; 62(15): 7146-7159, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31256587

ABSTRACT

A high-throughput screen for inhibitors of the histone acetyltransferase, KAT6A, led to identification of an aryl sulfonohydrazide derivative (CTX-0124143) that inhibited KAT6A with an IC50 of 1.0 µM. Elaboration of the structure-activity relationship and medicinal chemistry optimization led to the discovery of WM-8014 (97), a highly potent inhibitor of KAT6A (IC50 = 0.008 µM). WM-8014 competes with acetyl-CoA (Ac-CoA), and X-ray crystallographic analysis demonstrated binding to the Ac-CoA binding site. Through inhibition of KAT6A activity, WM-8014 induces cellular senescence and represents a unique pharmacological tool.


Subject(s)
Benzenesulfonates/chemistry , Drug Discovery/methods , Histone Acetyltransferases/antagonists & inhibitors , Histone Acetyltransferases/metabolism , Hydrazines/chemistry , Animals , Benzenesulfonates/pharmacology , Caco-2 Cells , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Hydrazines/pharmacology , Mice , Protein Structure, Secondary
15.
J Med Chem ; 62(11): 5562-5578, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31062592

ABSTRACT

A library of analogues of the cyanobacterium-derived depsipeptide natural product gallinamide A were designed and prepared using a highly efficient and convergent synthetic route. Analogues were shown to exhibit potent inhibitory activity against the Plasmodium falciparum cysteine proteases falcipain 2 and falcipain 3 and against cultured chloroquine-sensitive (3D7) and chloroquine-resistant (W2) strains of P. falciparum. Three lead compounds were selected for evaluation of in vivo efficacy against Plasmodium berghei infection in mice on the basis of their improved blood, plasma, and microsomal stability profiles compared with the parent natural product. One of the lead analogues cured P. berghei-infected mice in the Peters 4 day-suppressive test when administered 25 mg kg-1 intraperitoneally daily for 4 days. The compound was also capable of clearing parasites in established infections at 50 mg kg-1 intraperitoneally daily for 4 days and exhibited moderate activity when administered as four oral doses of 100 mg kg-1.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Animals , Female , Inhibitory Concentration 50 , Mice , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology
16.
Article in English | MEDLINE | ID: mdl-30559138

ABSTRACT

A series of 4-amino 2-anilinoquinazolines optimized for activity against the most lethal malaria parasite of humans, Plasmodium falciparum, was evaluated for activity against other human Plasmodium parasites and related apicomplexans that infect humans and animals. Four of the most promising compounds from the 4-amino 2-anilinoquinazoline series were equally as effective against the asexual blood stages of the zoonotic P. knowlesi, suggesting that they could also be effective against the closely related P. vivax, another important human pathogen. The 2-anilinoquinazoline compounds were also potent against an array of P. falciparum parasites resistant to clinically available antimalarial compounds, although slightly less so than against the drug-sensitive 3D7 parasite line. The apicomplexan parasites Toxoplasma gondii, Babesia bovis, and Cryptosporidium parvum were less sensitive to the 2-anilinoquinazoline series with a 50% effective concentration generally in the low micromolar range, suggesting that the yet to be discovered target of these compounds is absent or highly divergent in non-Plasmodium parasites. The 2-anilinoquinazoline compounds act as rapidly as chloroquine in vitro and when tested in rodents displayed a half-life that contributed to the compound's capacity to clear P. falciparum blood stages in a humanized mouse model. At a dose of 50 mg/kg of body weight, adverse effects to the humanized mice were noted, and evaluation against a panel of experimental high-risk off targets indicated some potential off-target activity. Further optimization of the 2-anilinoquinazoline antimalarial class will concentrate on improving in vivo efficacy and addressing adverse risk.


Subject(s)
Aniline Compounds/pharmacology , Antiparasitic Agents/pharmacology , Babesia bovis/drug effects , Cryptosporidium parvum/drug effects , Plasmodium falciparum/drug effects , Quinazolines/pharmacology , Toxoplasma/drug effects , Animals , Antimalarials/pharmacology , Cell Line , Chloroquine/pharmacology , Disease Models, Animal , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Parasitic Sensitivity Tests , Rats , Rats, Sprague-Dawley
17.
Bioorg Med Chem Lett ; 28(23-24): 3648-3651, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30389288

ABSTRACT

Urea carboxylic acids, products of aryl hydantoin hydrolysis, were recently identified as a new antischistosomal chemotype. We now describe a baseline structure-activity relationship (SAR) for this compound series. With one exception, analogs of lead urea carboxylic acid 2 were quite polar with Log D7.4 values ranging from -1.9 to 1.8, had high aqueous solubilities in the range of 25-100 µg/mL, and were metabolically stable. None of the compounds had measurable in vitro antischistosomal activity or cytotoxicity, but four of these had moderate worm burden reduction (WBR) values of 42-70% when they were administered as single 100 mg/kg oral doses to S. mansoni-infected mice. These data indicate that with the exception of the gem-dimethyl substructure and the distal nitrogen atom of the urea functional group, the rest of the structure of 2 is required for in vivo antischistosomal activity.


Subject(s)
Carboxylic Acids/chemistry , Schistosomicides/chemistry , Urea/chemistry , Animals , Carboxylic Acids/metabolism , Carboxylic Acids/pharmacology , Carboxylic Acids/therapeutic use , Half-Life , Humans , Mice , Microsomes, Liver/metabolism , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/veterinary , Schistosomicides/metabolism , Schistosomicides/pharmacology , Schistosomicides/therapeutic use , Structure-Activity Relationship
19.
Pharm Res ; 35(11): 210, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30225649

ABSTRACT

PURPOSE: To examine the utility of human plasma as an assay medium in Caco-2 permeability studies to overcome poor mass balance and inadequate sink conditions frequently encountered with lipophilic compounds. METHODS: Caco-2 permeability was assessed for reference compounds with known transport mechanisms using either pH 7.4 buffer or human plasma as the assay medium in both the apical and basolateral chambers. When using plasma, Papp values were corrected for the unbound fraction in the donor chamber. The utility of the approach was assessed by measuring the permeability of selected antimalarial compounds using the two assay media. RESULTS: Caco-2 cell monolayer integrity and P-gp transporter function were unaffected by the presence of human plasma in the donor and acceptor chambers. For many of the reference compounds having good mass balance with buffer as the medium, higher Papp values were observed with plasma, likely due to improved acceptor sink conditions. The lipophilic antimalarial compounds exhibited low mass balance with buffer, however the use of plasma markedly improved mass balance allowing the determination of more reliable Papp values. CONCLUSIONS: The results support the utility of human plasma as an alternate Caco-2 assay medium to improve mass balance and permeability measurements for lipophilic compounds.


Subject(s)
Antimalarials/pharmacokinetics , Epithelial Cells/metabolism , Intestinal Absorption , Plasma/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , Antimalarials/chemistry , Blood Proteins/metabolism , Caco-2 Cells , Cell Culture Techniques , Humans , Lipids/chemistry , Lipids/pharmacokinetics , Permeability , Pharmacokinetics
20.
ACS Omega ; 3(8): 9227-9240, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30197997

ABSTRACT

Malaria kills nearly 0.5 million people yearly and impacts the lives of those living in over 90 countries where it is endemic. The current treatment programs are threatened by increasing drug resistance. Dihydroorotate dehydrogenase (DHODH) is now clinically validated as a target for antimalarial drug discovery as a triazolopyrimidine class inhibitor (DSM265) is currently undergoing clinical development. We discovered a related isoxazolopyrimidine series in a phenotypic screen, later determining that it targeted DHODH. To determine if the isoxazolopyrimidines could yield a drug candidate, we initiated hit-to-lead medicinal chemistry. Several potent analogues were identified, including a compound that showed in vivo antimalarial activity. The isoxazolopyrimidines were more rapidly metabolized than their triazolopyrimidine counterparts, and the pharmacokinetic data were not consistent with the goal of a single-dose treatment for malaria.

SELECTION OF CITATIONS
SEARCH DETAIL
...