Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
medRxiv ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37961498

ABSTRACT

De novo mutations cause a variety of neurodevelopmental disorders including autism. Recent whole genome sequencing from individuals with autism has shown that many de novo mutations also occur in untranslated regions (UTRs) of genes, but it is difficult to predict from sequence alone which mutations are functional, let alone causal. Therefore, we developed a high throughput assay to screen the transcriptional and translational effects of 997 variants from 5'UTR patient mutations. This assay successfully enriched for elements that alter reporter translation, identifying over 100 potentially functional mutations from probands. Studies in patient-derived cell lines further confirmed that these mutations can alter protein production in individuals with autism, and some variants fall in genes known to cause syndromic forms of autism, suggesting a diagnosis for these individual patients. Since UTR function varies by cell type, we further optimized this high throughput assay to enable assessment of mutations in neurons in vivo. First, comparing in cellulo to in vivo results, we demonstrate neurons have different principles of regulation by 5'UTRs, consistent with a more robust mechanism for reducing the impact of RNA secondary structure. Finally, we discovered patient mutations specifically altering the translational activity of additional known syndromic genes LRRC4 and ZNF644 in neurons of the brain. Overall our results highlight a new approach for assessing the impact of 5'UTR mutations across cell types and suggest that some cases of neurodevelopmental disorder may be caused by such variants.

2.
bioRxiv ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37546949

ABSTRACT

Aquaporin-4 (AQP4) is a water channel protein that links astrocytic endfeet to the blood-brain barrier (BBB) and regulates water and potassium homeostasis in the brain, as well as the glymphatic clearance of waste products that would otherwise potentiate neurological diseases. Recently, translational readthrough was shown to generate a C-terminally extended variant of AQP4, known as AQP4x, that preferentially localizes around the BBB through interaction with the scaffolding protein α-syntrophin, and loss of AQP4x disrupts waste clearance from the brain. To investigate the function of AQP4x, we generated a novel mouse AQP4 line (AllX) to increase relative levels of the readthrough variant above the ~15% of AQP4 in the brain of wildtype (WT) mice. We validated the line and assessed characteristics that are affected by the presence of AQP4x, including AQP4 and α-syntrophin localization, integrity of the BBB, and neurovascular coupling. We compared AllXHom and AllXHet mice to wildtype, and to previously characterized AQP4 NoXHet and NoXHom mice, which cannot produce AQP4x. Increased dose of AQP4x enhanced perivascular localization of α-syntrophin and AQP4, while total protein expression of the two were unchanged. However, at 100% readthrough, AQP4x localization and formation of higher-order complexes was disrupted. Electron microscopy showed that overall blood vessel morphology was unchanged except for increased endothelial cell vesicles in NoXHom mice, which may correspond to a leakier BBB or altered efflux that was identified in NoX mice using MRI. These data demonstrate that AQP4x plays a small but measurable role in maintaining BBB integrity as well as recruiting structural and functional support proteins to the blood vessel. This also establishes a new set of genetic tools for quantitatively modulating AQP4x levels.

4.
Sci Adv ; 8(29): eabo3625, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35857840

ABSTRACT

KCNQ2 and KCNQ3 form the M-channels that are important in regulating neuronal excitability. Inherited mutations that alter voltage-dependent gating of M-channels are associated with neonatal epilepsy. In the homolog KCNQ1 channel, two steps of voltage sensor activation lead to two functionally distinct open states, the intermediate-open (IO) and activated-open (AO), which define the gating, physiological, and pharmacological properties of KCNQ1. However, whether the M-channel shares the same mechanism is unclear. Here, we show that KCNQ2 and KCNQ3 feature only a single conductive AO state but with a conserved mechanism for the electro-mechanical (E-M) coupling between voltage sensor activation and pore opening. We identified some epilepsy-linked mutations in KCNQ2 and KCNQ3 that disrupt E-M coupling. The antiepileptic drug retigabine rescued KCNQ3 currents that were abolished by a mutation disrupting E-M coupling, suggesting that modulating the E-M coupling in KCNQ channels presents a potential strategy for antiepileptic therapy.

5.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33990467

ABSTRACT

Cardiac arrhythmias are the most common cause of sudden cardiac death worldwide. Lengthening the ventricular action potential duration (APD), either congenitally or via pathologic or pharmacologic means, predisposes to a life-threatening ventricular arrhythmia, Torsade de Pointes. IKs (KCNQ1+KCNE1), a slowly activating K+ current, plays a role in action potential repolarization. In this study, we screened a chemical library in silico by docking compounds to the voltage-sensing domain (VSD) of the IKs channel. Here, we show that C28 specifically shifted IKs VSD activation in ventricle to more negative voltages and reversed the drug-induced lengthening of APD. At the same dosage, C28 did not cause significant changes of the normal APD in either ventricle or atrium. This study provides evidence in support of a computational prediction of IKs VSD activation as a potential therapeutic approach for all forms of APD prolongation. This outcome could expand the therapeutic efficacy of a myriad of currently approved drugs that may trigger arrhythmias.


Subject(s)
Action Potentials/drug effects , KCNQ1 Potassium Channel/genetics , Myocytes, Cardiac/metabolism , Small Molecule Libraries/pharmacology , Action Potentials/physiology , Amino Acid Substitution , Animals , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/pathology , Calcium/metabolism , Dogs , Furans/pharmacology , Gene Expression , Guinea Pigs , Heart Atria/cytology , Heart Atria/metabolism , Heart Ventricles/cytology , Heart Ventricles/metabolism , Humans , KCNQ1 Potassium Channel/chemistry , KCNQ1 Potassium Channel/metabolism , Moxifloxacin/pharmacology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Oocytes/cytology , Oocytes/drug effects , Oocytes/metabolism , Patch-Clamp Techniques , Phenethylamines/pharmacology , Potassium/metabolism , Primary Cell Culture , Pyridines/pharmacology , Pyrimidines/pharmacology , Sodium/metabolism , Sulfonamides/pharmacology , Transgenes , Xenopus laevis
6.
Sci Adv ; 6(50)2020 12.
Article in English | MEDLINE | ID: mdl-33310856

ABSTRACT

Calmodulin (CaM) and phosphatidylinositol 4,5-bisphosphate (PIP2) are potent regulators of the voltage-gated potassium channel KCNQ1 (KV7.1), which conducts the cardiac I Ks current. Although cryo-electron microscopy structures revealed intricate interactions between the KCNQ1 voltage-sensing domain (VSD), CaM, and PIP2, the functional consequences of these interactions remain unknown. Here, we show that CaM-VSD interactions act as a state-dependent switch to control KCNQ1 pore opening. Combined electrophysiology and molecular dynamics network analysis suggest that VSD transition into the fully activated state allows PIP2 to compete with CaM for binding to VSD. This leads to conformational changes that alter VSD-pore coupling to stabilize open states. We identify a motif in the KCNQ1 cytosolic domain, which works downstream of CaM-VSD interactions to facilitate the conformational change. Our findings suggest a gating mechanism that integrates PIP2 and CaM in KCNQ1 voltage-dependent activation, yielding insights into how KCNQ1 gains the phenotypes critical for its physiological function.

7.
Commun Biol ; 3(1): 385, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32678288

ABSTRACT

KCNQ family K+ channels (KCNQ1-5) in the heart, nerve, epithelium and ear require phosphatidylinositol 4,5-bisphosphate (PIP2) for voltage dependent activation. While membrane lipids are known to regulate voltage sensor domain (VSD) activation and pore opening in voltage dependent gating, PIP2 was found to interact with KCNQ1 and mediate VSD-pore coupling. Here, we show that a compound CP1, identified in silico based on the structures of both KCNQ1 and PIP2, can substitute for PIP2 to mediate VSD-pore coupling. Both PIP2 and CP1 interact with residues amongst a cluster of amino acids critical for VSD-pore coupling. CP1 alters KCNQ channel function due to different interactions with KCNQ compared with PIP2. We also found that CP1 returned drug-induced action potential prolongation in ventricular myocytes to normal durations. These results reveal the structural basis of PIP2 regulation of KCNQ channels and indicate a potential approach for the development of anti-arrhythmic therapy.


Subject(s)
KCNQ Potassium Channels/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Action Potentials , Animals , Computer Simulation , Guinea Pigs , KCNQ Potassium Channels/chemistry , KCNQ1 Potassium Channel/chemistry , KCNQ1 Potassium Channel/metabolism , Myocytes, Cardiac/metabolism , Oocytes , Patch-Clamp Techniques , Phosphatidylinositol 4,5-Diphosphate/analogs & derivatives , Phosphatidylinositol 4,5-Diphosphate/chemistry , Protein Structure, Tertiary , Xenopus laevis
8.
Elife ; 92020 02 25.
Article in English | MEDLINE | ID: mdl-32096762

ABSTRACT

Voltage-gated ion channels feature voltage sensor domains (VSDs) that exist in three distinct conformations during activation: resting, intermediate, and activated. Experimental determination of the structure of a potassium channel VSD in the intermediate state has previously proven elusive. Here, we report and validate the experimental three-dimensional structure of the human KCNQ1 voltage-gated potassium channel VSD in the intermediate state. We also used mutagenesis and electrophysiology in Xenopus laevisoocytes to functionally map the determinants of S4 helix motion during voltage-dependent transition from the intermediate to the activated state. Finally, the physiological relevance of the intermediate state KCNQ1 conductance is demonstrated using voltage-clamp fluorometry. This work illuminates the structure of the VSD intermediate state and demonstrates that intermediate state conductivity contributes to the unusual versatility of KCNQ1, which can function either as the slow delayed rectifier current (IKs) of the cardiac action potential or as a constitutively active epithelial leak current.


Subject(s)
KCNQ1 Potassium Channel/physiology , Animals , Electrophysiology , Fluorometry , Humans , KCNQ1 Potassium Channel/chemistry , KCNQ1 Potassium Channel/metabolism , Magnetic Resonance Spectroscopy , Oocytes , Patch-Clamp Techniques , Protein Structure, Tertiary , Xenopus laevis
9.
Nat Commun ; 11(1): 676, 2020 02 03.
Article in English | MEDLINE | ID: mdl-32015334

ABSTRACT

In voltage-gated potassium (KV) channels, the voltage-sensing domain (VSD) undergoes sequential activation from the resting state to the intermediate state and activated state to trigger pore opening via electro-mechanical (E-M) coupling. However, the spatial and temporal details underlying E-M coupling remain elusive. Here, utilizing KV7.1's unique two open states, we report a two-stage E-M coupling mechanism in voltage-dependent gating of KV7.1 as triggered by VSD activations to the intermediate and then activated state. When the S4 segment transitions to the intermediate state, the hand-like C-terminus of the VSD-pore linker (S4-S5L) interacts with the pore in the same subunit. When S4 then proceeds to the fully-activated state, the elbow-like hinge between S4 and S4-S5L engages with the pore of the neighboring subunit to activate conductance. This two-stage hand-and-elbow gating mechanism elucidates distinct tissue-specific modulations, pharmacology, and disease pathogenesis of KV7.1, and likely applies to numerous domain-swapped KV channels.


Subject(s)
Potassium Channels, Voltage-Gated/chemistry , Potassium Channels, Voltage-Gated/physiology , Humans , Ion Channel Gating/physiology , KCNQ1 Potassium Channel/chemistry , KCNQ1 Potassium Channel/physiology , Molecular Docking Simulation , Oocytes/metabolism , Potassium Channels , Protein Conformation
10.
Elife ; 82019 07 22.
Article in English | MEDLINE | ID: mdl-31329101

ABSTRACT

Upon membrane depolarization, the KCNQ1 potassium channel opens at the intermediate (IO) and activated (AO) states of the stepwise voltage-sensing domain (VSD) activation. In the heart, KCNQ1 associates with KCNE1 subunits to form IKs channels that regulate heart rhythm. KCNE1 suppresses the IO state so that the IKs channel opens only to the AO state. Here, we tested modulations of human KCNQ1 channels by an activator ML277 in Xenopus oocytes. It exclusively changes the pore opening properties of the AO state without altering the IO state, but does not affect VSD activation. These observations support a distinctive mechanism responsible for the VSD-pore coupling at the AO state that is sensitive to ML277 modulation. ML277 provides insights and a tool to investigate the gating mechanism of KCNQ1 channels, and our study reveals a new strategy for treating long QT syndrome by specifically enhancing the AO state of native IKs currents.


Subject(s)
KCNQ1 Potassium Channel/genetics , Long QT Syndrome/drug therapy , Potassium Channels, Voltage-Gated/genetics , Animals , Cell Membrane/genetics , Cell Membrane/physiology , Cell Polarity/genetics , Humans , Long QT Syndrome/genetics , Long QT Syndrome/pathology , Oocytes/drug effects , Oocytes/growth & development , Piperidines/pharmacology , Potassium/metabolism , Thiazoles/pharmacology , Tosyl Compounds/pharmacology , Xenopus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...