Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Fungi (Basel) ; 7(1)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33440757

ABSTRACT

What was once just culture and microscopy the field of diagnostic mycology has significantly advanced in recent years and continues to incorporate novel assays and strategies to meet the changes in clinical demand. The emergence of widespread resistance to antifungal therapy has led to the development of a range of molecular tests that target mutations associated with phenotypic resistance, to complement classical susceptibility testing and initial applications of next-generation sequencing are being described. Lateral flow assays provide rapid results, with simplicity allowing the test to be performed outside specialist centres, potentially as point-of-care tests. Mycology has responded positively to an ever-diversifying patient population by rapidly identifying risk and developing diagnostic strategies to improve patient management. Nowadays, the diagnostic repertoire of the mycology laboratory employs classical, molecular and serological tests and should be keen to embrace diagnostic advancements that can improve diagnosis in this notoriously difficult field.

2.
Cochrane Database Syst Rev ; 9: CD009551, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31478559

ABSTRACT

BACKGROUND: This is an update of the original review published in the Cochrane Database of Systematic Reviews Issue 10, 2015.Invasive aspergillosis (IA) is the most common life-threatening opportunistic invasive mould infection in immunocompromised people. Early diagnosis of IA and prompt administration of appropriate antifungal treatment are critical to the survival of people with IA. Antifungal drugs can be given as prophylaxis or empirical therapy, instigated on the basis of a diagnostic strategy (the pre-emptive approach) or for treating established disease. Consequently, there is an urgent need for research into both new diagnostic tools and drug treatment strategies. Increasingly, newer methods such as polymerase chain reaction (PCR) to detect fungal nucleic acids are being investigated. OBJECTIVES: To provide an overall summary of the diagnostic accuracy of PCR-based tests on blood specimens for the diagnosis of IA in immunocompromised people. SEARCH METHODS: We searched MEDLINE (1946 to June 2015) and Embase (1980 to June 2015). We also searched LILACS, DARE, Health Technology Assessment, Web of Science and Scopus to June 2015. We checked the reference lists of all the studies identified by the above methods and contacted relevant authors and researchers in the field. For this review update we updated electronic searches of the Cochrane Central Register of Controlled Trials (CENTRAL; 2018, Issue 3) in the Cochrane Library; MEDLINE via Ovid (June 2015 to March week 2 2018); and Embase via Ovid (June 2015 to 2018 week 12). SELECTION CRITERIA: We included studies that: i) compared the results of blood PCR tests with the reference standard published by the European Organisation for Research and Treatment of Cancer/Mycoses Study Group (EORTC/MSG); ii) reported data on false-positive, true-positive, false-negative and true-negative results of the diagnostic tests under investigation separately; and iii) evaluated the test(s) prospectively in cohorts of people from a relevant clinical population, defined as a group of individuals at high risk for invasive aspergillosis. Case-control and retrospective studies were excluded from the analysis. DATA COLLECTION AND ANALYSIS: Authors independently assessed quality and extracted data. For PCR assays, we evaluated the requirement for either one or two consecutive samples to be positive for diagnostic accuracy. We investigated heterogeneity by subgroup analyses. We plotted estimates of sensitivity and specificity from each study in receiver operating characteristics (ROC) space and constructed forest plots for visual examination of variation in test accuracy. We performed meta-analyses using the bivariate model to produce summary estimates of sensitivity and specificity. MAIN RESULTS: We included 29 primary studies (18 from the original review and 11 from this update), corresponding to 34 data sets, published between 2000 and 2018 in the meta-analyses, with a mean prevalence of proven or probable IA of 16.3 (median prevalence 11.1% , range 2.5% to 57.1%). Most patients had received chemotherapy for haematological malignancy or had undergone hematopoietic stem cell transplantation. Several PCR techniques were used among the included studies. The sensitivity and specificity of PCR for the diagnosis of IA varied according to the interpretative criteria used to define a test as positive. The summary estimates of sensitivity and specificity were 79.2% (95% confidence interval (CI) 71.0 to 85.5) and 79.6% (95% CI 69.9 to 86.6) for a single positive test result, and 59.6% (95% CI 40.7 to 76.0) and 95.1% (95% CI 87.0 to 98.2) for two consecutive positive test results. AUTHORS' CONCLUSIONS: PCR shows moderate diagnostic accuracy when used as screening tests for IA in high-risk patient groups. Importantly the sensitivity of the test confers a high negative predictive value (NPV) such that a negative test allows the diagnosis to be excluded. Consecutive positives show good specificity in diagnosis of IA and could be used to trigger radiological and other investigations or for pre-emptive therapy in the absence of specific radiological signs when the clinical suspicion of infection is high. When a single PCR positive test is used as the diagnostic criterion for IA in a population of 100 people with a disease prevalence of 16.3% (overall mean prevalence), three people with IA would be missed (sensitivity 79.2%, 20.8% false negatives), and 17 people would be unnecessarily treated or referred for further tests (specificity of 79.6%, 21.4% false positives). If we use the two positive test requirement in a population with the same disease prevalence, it would mean that nine IA people would be missed (sensitivity 59.6%, 40.4% false negatives) and four people would be unnecessarily treated or referred for further tests (specificity of 95.1%, 4.9% false positives). Like galactomannan, PCR has good NPV for excluding disease, but the low prevalence of disease limits the ability to rule in a diagnosis. As these biomarkers detect different markers of disease, combining them is likely to prove more useful.


Subject(s)
Aspergillosis/blood , Aspergillosis/diagnosis , Immunocompromised Host , Opportunistic Infections , Polymerase Chain Reaction/methods , Case-Control Studies , Humans , Opportunistic Infections/blood , Opportunistic Infections/diagnosis , Predictive Value of Tests , Sensitivity and Specificity
3.
EBioMedicine ; 22: 155-163, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28705464

ABSTRACT

Pneumocystis jirovecii is an airborne human-specific ascomycetous fungus responsible for Pneumocystis pneumonia (PCP) in immunocompromised patients, affecting >500,000 patients per year (www.gaffi.org). The understanding of its epidemiology is limited by the lack of standardised culture. Recent genotyping data suggests a limited genetic diversity of P. jirovecii. The objective of the study was to assess the diversity of P. jirovecii across European hospitals and analyse P. jirovecii diversity in respect to clinical data obtained from the patients. Genotyping was performed using six already validated short tandem repeat (STR) markers on 249 samples (median: 17 per centre interquartile range [11-20]) from PCP patients of 16 European centres. Mixtures of STR markers (i.e., ≥2 alleles for ≥1 locus) were detected in 67.6% (interquartile range [61.4; 76.5]) of the samples. Mixture was significantly associated with the underlying disease of the patient, with an increased proportion in HIV patients (78.3%) and a decreased proportion in renal transplant recipients (33.3%) (p<0.001). The distribution of the alleles was significantly different (p<0.001) according to the centres in three out of six markers. In analysable samples, 201 combinations were observed corresponding to 137 genotypes: 116 genotypes were country-specific; 12 in two; six in three; and two in four and one in five countries. Nine genotypes were recorded more than once in a given country. Genotype 123 (Gt123) was significantly associated with France (14/15, p<0.001) and Gt16 with Belgium (5/5, p<0.001). More specifically, Gt123 was observed mainly in France (14/15/16 patients) and in renal transplant patient (13/15). Our study showed the wide population diversity across Europe, with evidence of local clusters of patients harbouring a given genotype. These data suggest a specific association between genotype and underlying disease, with evidence of a different natural history of PCP in HIV patients and renal transplant recipients.


Subject(s)
DNA, Fungal/genetics , Genotyping Techniques/methods , Pneumocystis carinii/classification , Pneumonia, Pneumocystis/microbiology , Adult , Aged , Europe , Female , Genetic Variation , Humans , Male , Microsatellite Repeats , Middle Aged , Phylogeny , Phylogeography , Pneumocystis carinii/genetics , Pneumocystis carinii/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...