Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cancer Res Commun ; 4(4): 1024-1040, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592451

ABSTRACT

Non-Hodgkin lymphoma (NHL) is a common cancer in both men and women and represents a significant cancer burden worldwide. Primary effusion lymphoma (PEL) is a subtype of NHL infected with Kaposi sarcoma-associated herpesvirus (KSHV). PEL is an aggressive and lethal cancer with no current standard of care, owing largely to its propensity to develop resistance to current chemotherapeutic regimens. Here, we report a reliance of KSHV-positive PEL on the mitotic kinase, NEK2, for survival. Inhibition of NEK2 with the inhibitor, JH295, resulted in caspase 3-mediated apoptotic cell death of PEL. Furthermore, NEK2 inhibition significantly prolonged survival and reduced tumor burden in a PEL mouse model. We also demonstrate that the ABC transporter proteins, MDR1 and MRP, are most active in PEL and that inhibition of NEK2 in PEL reduced the expression and activity of these ABC transporter proteins, which are known to mediate drug resistance in cancer. Finally, we report that JH295 treatment sensitized lymphomas to other chemotherapeutic agents such as rapamycin, resulting in enhanced cancer cell death. Overall, these data offer important insight into the mechanisms underlying PEL survival and drug resistance, and suggest that NEK2 is a viable therapeutic target for PEL. SIGNIFICANCE: The mitotic kinase, NEK2, is important for the survival of KSHV-positive PEL. NEK2 inhibition resulted in PEL apoptosis and reduced tumor burden in a mouse model. NEK2 inhibition also reduced drug resistance.


Subject(s)
Herpesvirus 8, Human , Lymphoma, Non-Hodgkin , Lymphoma, Primary Effusion , Male , Animals , Mice , Humans , Female , Lymphoma, Primary Effusion/drug therapy , ATP-Binding Cassette Transporters , Aggression , Disease Models, Animal , NIMA-Related Kinases/genetics
2.
Cell Death Dis ; 14(10): 688, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37852997

ABSTRACT

Oncogenic viruses have developed various strategies to antagonize cell death and maintain lifelong persistence in their host, a relationship that may contribute to cancer development. Understanding how viruses inhibit cell death is essential for understanding viral oncogenesis. Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with three different cancers in the human population, including Kaposi's sarcoma (KS), the most common cancer in HIV patients. Previous studies have indicated that the KSHV-encoded viral protein kinase (vPK) impacts many processes dysregulated in tumorigenesis. Here, we report that vPK protects cells from apoptosis mediated by Caspase-3. Human umbilical vein endothelial cells (HUVECs) expressing vPK (HUVEC-vPK) have a survival advantage over control HUVEC under conditions of extrinsic- and intrinsic-mediated apoptosis. Abolishing the catalytic activity of vPK attenuated this survival advantage. We found that KSHV vPK-expressing HUVECs exhibited increased activation of cellular AKT kinase, a cell survival kinase, compared to control cells without vPK. In addition, we report that vPK directly binds the pleckstrin homology (PH) domain of AKT1 but not AKT2 or AKT3. Treatment of HUVEC-vPK cells with a pan-AKT inhibitor Miransertib (ARQ 092) reduced the overall phosphorylation of AKT, resulting in the cleavage of Caspase-3 and the induction of apoptosis. Furthermore, vPK expression activated VEGF/VEGFR2 in HUVECs and promoted angiogenesis through the AKT pathway. vPK expression also inhibited the cytotoxicity of cisplatin in vitro and in vivo. Collectively, our findings demonstrate that vPK's ability to augment cell survival and promote angiogenesis is critically dependent on AKT signaling, which is relevant for future therapies for treating KSHV-associated cancers.


Subject(s)
HIV Infections , Herpesvirus 8, Human , Sarcoma, Kaposi , Humans , Herpesvirus 8, Human/physiology , Viral Proteins/metabolism , Caspase 3/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Survival , Human Umbilical Vein Endothelial Cells/metabolism
3.
Curr Opin Immunol ; 78: 102253, 2022 10.
Article in English | MEDLINE | ID: mdl-36240666

ABSTRACT

Malignancies that arise as a result of viral infection account for roughly 15% of cancer cases worldwide. The innate immune system is the body's first line of defense against oncogenic viral infection and is also involved in the response against viral-driven tumors. In this review, we discuss research advances made over the last five years elucidating how the innate immune system recognizes and responds to oncogenic viruses, how these viruses have evolved to escape this immune pressure, and ways that innate immunity can inform the development of novel therapeutics against oncogenic viral infection and their associated cancers.


Subject(s)
Neoplasms , Virus Diseases , Humans , Oncogenic Viruses , Immunity, Innate , Biology
4.
J Mol Biol ; 434(6): 167214, 2022 03 30.
Article in English | MEDLINE | ID: mdl-34437888

ABSTRACT

Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections in the vast majority of adults worldwide. Importantly, these viruses are associated with numerous malignancies and are responsible for significant human cancer burden. These virus-associated cancers are due, in part, to the ability of gammaherpesviruses to successfully evade the innate immune response throughout the course of infection. In this review, we will summarize the current understanding of how gammaherpesviruses are detected by innate immune sensors, how these viruses evade recognition by host cells, and how this knowledge can inform novel therapeutic approaches for these viruses and their associated diseases.


Subject(s)
Gammaherpesvirinae , Herpesviridae Infections , Immune Evasion , Immunity, Innate , Gammaherpesvirinae/immunology , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Humans , Virus Latency
5.
Adv Virus Res ; 109: 201-254, 2021.
Article in English | MEDLINE | ID: mdl-33934828

ABSTRACT

The DNA viruses, Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), are members of the gammaherpesvirus subfamily, a group of viruses whose infection is associated with multiple malignancies, including cancer. The primary host for these viruses is humans and, like all herpesviruses, infection with these pathogens is lifelong. Due to the persistence of gammaherpesvirus infection and the potential for cancer formation in infected individuals, there is a driving need to understand not only the biology of these viruses and how they remain undetected in host cells but also the mechanism(s) by which tumorigenesis occurs. One of the methods that has provided much insight into these processes is proteomics. Proteomics is the study of all the proteins that are encoded by a genome and allows for (i) identification of existing and novel proteins derived from a given genome, (ii) interrogation of protein-protein interactions within a system, and (iii) discovery of druggable targets for the treatment of malignancies. In this chapter, we explore how proteomics has contributed to our current understanding of gammaherpesvirus biology and their oncogenic processes, as well as the clinical applications of proteomics for the detection and treatment of gammaherpesvirus-associated cancers.


Subject(s)
Carcinogenesis , Gammaherpesvirinae/pathogenicity , Host Microbial Interactions , Proteomics/methods , Books , DNA Viruses/pathogenicity , Gammaherpesvirinae/genetics , Herpesviridae Infections/complications , Herpesviridae Infections/drug therapy , Humans , Tumor Virus Infections/complications , Tumor Virus Infections/drug therapy , Virus Replication
6.
Nat Microbiol ; 5(9): 1158-1169, 2020 09.
Article in English | MEDLINE | ID: mdl-32632248

ABSTRACT

Infection with a single influenza A virus (IAV) is only rarely sufficient to initiate productive infection. Instead, multiple viral genomes are often required in a given cell. Here, we show that the reliance of IAV on multiple infection can form an important species barrier. Namely, we find that avian H9N2 viruses representative of those circulating widely at the poultry-human interface exhibit acute dependence on collective interactions in mammalian systems. This need for multiple infection is greatly reduced in the natural host. Quantification of incomplete viral genomes showed that their complementation accounts for the moderate reliance on multiple infection seen in avian cells but not the added reliance seen in mammalian cells. An additional form of virus-virus interaction is needed in mammals. We find that the PA gene segment is a major driver of this phenotype and that both viral replication and transcription are affected. These data indicate that multiple distinct mechanisms underlie the reliance of IAV on multiple infection and underscore the importance of virus-virus interactions in IAV infection, evolution and emergence.


Subject(s)
Host-Pathogen Interactions/physiology , Influenza A virus/genetics , Influenza A virus/physiology , Virus Replication/genetics , Virus Replication/physiology , Animals , Birds , Chickens , Coturnix , Disease Models, Animal , Dogs , Female , Genome, Viral , Guinea Pigs , Host Specificity , Humans , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/virology , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Orthomyxoviridae Infections/virology
7.
Proc Natl Acad Sci U S A ; 116(10): 4611-4618, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30760600

ABSTRACT

Influenza A virus (IAV) has a segmented genome, which (i) allows for exchange of gene segments in coinfected cells, termed reassortment, and (ii) necessitates a selective packaging mechanism to ensure incorporation of a complete set of segments into virus particles. Packaging signals serve as segment identifiers and enable segment-specific packaging. We have previously shown that packaging signals limit reassortment between heterologous IAV strains in a segment-dependent manner. Here, we evaluated the extent to which packaging signals prevent reassortment events that would raise concern for pandemic emergence. Specifically, we tested the compatibility of hemagglutinin (HA) packaging signals from H5N8 and H7N9 avian IAVs with a human seasonal H3N2 IAV. By evaluating reassortment outcomes, we demonstrate that HA segments carrying H5 or H7 packaging signals are significantly disfavored for incorporation into a human H3N2 virus in both cell culture and a guinea pig model. However, incorporation of the heterologous HAs was not excluded fully, and variants with heterologous HA packaging signals were detected at low levels in vivo, including in naïve contact animals. This work indicates that the likelihood of reassortment between human seasonal IAV and avian IAV is reduced by divergence in the RNA packaging signals of the HA segment. These findings offer important insight into the molecular mechanisms governing IAV emergence and inform efforts to estimate the risks posed by H7N9 and H5N8 subtype avian IAVs.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H5N8 Subtype/physiology , Influenza A Virus, H7N9 Subtype/physiology , Influenza, Human/virology , Reassortant Viruses/physiology , Virus Assembly , Animals , Guinea Pigs , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H3N2 Subtype/physiology , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H7N9 Subtype/genetics , Male , Reassortant Viruses/genetics
8.
J Gen Virol ; 99(1): 3-16, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29244017

ABSTRACT

Influenza A virus (IAV) is an RNA virus with a segmented genome. These viral properties allow for the rapid evolution of IAV under selective pressure, due to mutation occurring from error-prone replication and the exchange of gene segments within a co-infected cell, termed reassortment. Both mutation and reassortment give rise to genetic diversity, but constraints shape their impact on viral evolution: just as most mutations are deleterious, most reassortment events result in genetic incompatibilities. The phenomenon of segment mismatch encompasses both RNA- and protein-based incompatibilities between co-infecting viruses and results in the production of progeny viruses with fitness defects. Segment mismatch is an important determining factor of the outcomes of mixed IAV infections and has been addressed in multiple risk assessment studies undertaken to date. However, due to the complexity of genetic interactions among the eight viral gene segments, our understanding of segment mismatch and its underlying mechanisms remain incomplete. Here, we summarize current knowledge regarding segment mismatch and discuss the implications of this phenomenon for IAV reassortment and diversity.


Subject(s)
Evolution, Molecular , Genome, Viral , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Orthomyxoviridae Infections/veterinary , RNA, Viral/genetics , Animals , Antigenic Variation , Birds/virology , Genotype , Humans , Influenza A Virus, H1N1 Subtype/classification , Influenza A Virus, H3N2 Subtype/classification , Influenza, Human/epidemiology , Influenza, Human/transmission , Influenza, Human/virology , Mutation , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Phylogeny , Reassortant Viruses/genetics
9.
J Virol ; 91(11)2017 06 01.
Article in English | MEDLINE | ID: mdl-28331085

ABSTRACT

Influenza A virus (IAV) RNA packaging signals serve to direct the incorporation of IAV gene segments into virus particles, and this process is thought to be mediated by segment-segment interactions. These packaging signals are segment and strain specific, and as such, they have the potential to impact reassortment outcomes between different IAV strains. Our study aimed to quantify the impact of packaging signal mismatch on IAV reassortment using the human seasonal influenza A/Panama/2007/99 (H3N2) and pandemic influenza A/Netherlands/602/2009 (H1N1) viruses. Focusing on the three most divergent segments, we constructed pairs of viruses that encoded identical proteins but differed in the packaging signal regions on a single segment. We then evaluated the frequency with which segments carrying homologous versus heterologous packaging signals were incorporated into reassortant progeny viruses. We found that, when segment 4 (HA) of coinfecting parental viruses was modified, there was a significant preference for the segment containing matched packaging signals relative to the background of the virus. This preference was apparent even when the homologous HA constituted a minority of the HA segment population available in the cell for packaging. Conversely, when segment 6 (NA) or segment 8 (NS) carried modified packaging signals, there was no significant preference for homologous packaging signals. These data suggest that movement of NA and NS segments between the human H3N2 and H1N1 lineages is unlikely to be restricted by packaging signal mismatch, while movement of the HA segment would be more constrained. Our results indicate that the importance of packaging signals in IAV reassortment is segment dependent.IMPORTANCE Influenza A viruses (IAVs) can exchange genes through reassortment. This process contributes to both the highly diverse population of IAVs found in nature and the formation of novel epidemic and pandemic IAV strains. Our study sought to determine the extent to which IAV packaging signal divergence impacts reassortment between seasonal IAVs. Our knowledge in this area is lacking, and insight into the factors that influence IAV reassortment will inform and strengthen ongoing public health efforts to anticipate the emergence of new viruses. We found that the packaging signals on the HA segment, but not the NA or NS segments, restricted IAV reassortment. Thus, the packaging signals of the HA segment could be an important factor in determining the likelihood that two IAV strains of public health interest will undergo reassortment.


Subject(s)
Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H3N2 Subtype/physiology , Reassortant Viruses/physiology , Virus Assembly , Animals , Evolution, Molecular , Genome, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Reassortant Viruses/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/genetics , Virion/physiology
10.
Biochemistry ; 56(2): 421-440, 2017 Jan 17.
Article in English | MEDLINE | ID: mdl-28000448

ABSTRACT

DNA-alkylating drugs continue to remain an important weapon in the arsenal against cancers. However, they typically suffer from several shortcomings because of the indiscriminate DNA damage that they cause and their inability to specifically target cancer cells. We have developed a strategy for overcoming the deficiencies in current DNA-alkylating chemotherapy drugs by designing a site-specific DNA-methylating agent that can target cancer cells because of its selective uptake via glucose transporters, which are overexpressed in most cancers. The design features of the molecule, its synthesis, its reactivity with DNA, and its toxicity in human glioblastoma cells are reported here. In this molecule, a glucosamine unit, which can facilitate uptake via glucose transporters, is conjugated to one end of a bispyrrole triamide unit, which is known to bind to the minor groove of DNA at A/T-rich regions. A methyl sulfonate moiety is tethered to the other end of the bispyrrole unit to serve as a DNA-methylating agent. This molecule produces exclusively N3-methyladenine adducts upon reaction with DNA and is an order of magnitude more toxic to treatment resistant human glioblastoma cells than streptozotocin is, a Food and Drug Administration-approved, glycoconjugated DNA-methylating drug. Cellular uptake studies using a fluorescent analogue of our molecule provide evidence of uptake via glucose transporters and localization within the nucleus of cells. These results demonstrate the feasibility of our strategy for developing more potent anticancer chemotherapeutics, while minimizing common side effects resulting from off-target damage.


Subject(s)
Antineoplastic Agents, Alkylating/chemical synthesis , DNA Adducts/biosynthesis , DNA, Neoplasm/antagonists & inhibitors , Glucose Transport Proteins, Facilitative/metabolism , Glycoconjugates/chemical synthesis , Neuroglia/drug effects , Adenine/analogs & derivatives , Adenine/chemistry , Adenine/metabolism , Alkanesulfonates/chemistry , Antineoplastic Agents, Alkylating/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Biological Transport , Cell Line, Tumor , Cell Survival/drug effects , DNA Adducts/chemistry , DNA Damage , DNA Methylation , DNA, Neoplasm/chemistry , DNA, Neoplasm/metabolism , Gene Expression , Glucosamine/chemistry , Glucose Transport Proteins, Facilitative/genetics , Glycoconjugates/metabolism , Glycoconjugates/pharmacology , Humans , Molecular Dynamics Simulation , Molecular Targeted Therapy , Neuroglia/metabolism , Neuroglia/pathology , Nucleic Acid Conformation , Pyrroles/chemistry , Streptozocin/pharmacology
11.
J Virol ; 89(16): 8453-61, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26041285

ABSTRACT

UNLABELLED: The reassortment of gene segments between influenza viruses increases genomic diversity and plays an important role in viral evolution. We have shown previously that this process is highly efficient within a coinfected cell and, given synchronous coinfection at moderate or high doses, can give rise to ~60 to 70% of progeny shed from an animal host. Conversely, reassortment in vivo can be rendered undetectable by lowering viral doses or extending the time between infections. One might also predict that seeding of transmitted viruses into different sites within the target tissue could limit subsequent reassortment. Given the potential for stochastic factors to restrict reassortment during natural infection, we sought to determine its efficiency in a host coinfected through transmission. Two scenarios were tested in a guinea pig model, using influenza A/Panama/2007/99 (H3N2) virus (wt) and a silently mutated variant (var) thereof as parental virus strains. In the first, coinfection was achieved by exposing a naive guinea pig to two cagemates, one infected with wt and the other with var virus. When such exposure led to coinfection, robust reassortment was typically seen, with 50 to 100% of isolates carrying reassortant genomes at one or more time points. In the second scenario, naive guinea pigs were exposed to a cagemate that had been coinoculated with wt and var viruses. Here, reassortment occurred in the coinoculated donor host, multiple variants were transmitted, and reassortants were prevalent in the recipient host. Together, these results demonstrate the immense potential for reassortment to generate viral diversity in nature. IMPORTANCE: Influenza viruses evolve rapidly under selection due to the generation of viral diversity through two mechanisms. The first is the introduction of random errors into the genome by the viral polymerase, which occurs with a frequency of approximately 10(-5) errors/nucleotide replicated. The second is reassortment, or the exchange of gene segments between viruses. Reassortment is known to occur readily under well-controlled laboratory conditions, but its frequency in nature is not clear. Here, we tested the hypothesis that reassortment efficiency following coinfection through transmission would be reduced compared to that seen with coinoculation. Contrary to this hypothesis, our results indicate that coinfection achieved through transmission supports high levels of reassortment. These results suggest that reassortment is not exquisitely sensitive to stochastic effects associated with transmission and likely occurs in nature whenever a host is infected productively with more than one influenza A virus.


Subject(s)
Genetic Variation , Influenza A Virus, H3N2 Subtype/genetics , Orthomyxoviridae Infections/transmission , Reassortant Viruses/genetics , Animals , Coinfection/transmission , Dogs , Genotype , Guinea Pigs , Influenza A Virus, H3N2 Subtype/physiology , Madin Darby Canine Kidney Cells , Stochastic Processes
12.
J Virol ; 86(5): 2882-6, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22205738

ABSTRACT

The cytolytic animal virus equine herpesvirus type 1 (EHV-1) was evaluated for its oncolytic potential against five human glioblastoma cell lines. EHV-1 productively infected four of these cell lines, and the degree of infection was positively correlated with glioma cell death. No human major histocompatibility complex class 1 (MHC-I) was detected in the resistant glioma line, while infection of the susceptible glioma cell lines, which expressed human MHC-I, were blocked with antibody to MHC-I, indicating that human MHC-I acts as an EHV-1 entry receptor on glioma cells.


Subject(s)
Brain Neoplasms/virology , Glioblastoma/virology , Herpesvirus 1, Equid/physiology , Oncolytic Virotherapy/instrumentation , Oncolytic Viruses/physiology , Brain Neoplasms/therapy , Cell Line, Tumor , Glioblastoma/therapy , Herpesvirus 1, Equid/genetics , Humans , Oncolytic Viruses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...