Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr C Struct Chem ; 79(Pt 4): 142-148, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36942911

ABSTRACT

The stepwise addition of Cu2+ ions to the nonplanar cyclic Schiff base 5,9,14,18-tetramethyl-1,4,10,13-tetraazacyclooctadeca-5,8,14,17-tetraene-7,16-dione (H4daaden, C18H28N4O2), yields a one-end-open dinuclear copper chelate. The pyridine adduct of the dinuclear copper chelate, namely, [µ-6,11-dimethyl-7,10-diazahexadeca-5,11-diene-2,4,13,15-tetraolato(4-)](pyridine)dicopper(II), [Cu2(C16H20N2O4)(C5H5N)], was characterized by single-crystal X-ray crystallography. The two CuII atoms of the copper chelate display different coordination modes, i.e. inner-N2O2 and outer-O2O2. The Cu atom which is bonded in the outer-O2O2 mode is axially bonded to a pyridine molecule, which suggests that the electron-donating ability of the O2O2 site to the Cu atom is poor. As a result, the O2O2-bonded Cu atom has a coordination number of five, showing square-bipyramidal geometry around the Cu atom. The N2O2-coordinated site provides sufficient electron density to the other Cu atom to be stabilized with a coordination number of four, showing square-planar geometry around the Cu atom. The electron-donating ability of the ligand coordination sites plays a key role in determining the coordination number of the Cu atoms of the dicopper chelate.

2.
Acta Crystallogr C Struct Chem ; 78(Pt 6): 338-342, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35662133

ABSTRACT

A Schiff base derived from ethylenediamine and heptane-2,4,6-trione, namely, 5,9,14,18-tetramethyl-1,4,10,13-tetraazacyclooctadeca-5,8,14,17-tetraene-7,16-dione (C18H28N4O2), abbreviated H4daaden, was prepared and characterized for the first time by single-crystal X-ray diffraction. The atoms of the Schiff base occupy two different planes and thus the molecule is essentially nonplanar. An axis running through the C-C atoms of the ethylenediamine groups separate the two planes and these two planes are connected by bridging ethylene groups showing an angle of 117.34 (8)°. As a result, the side view of the molecule shows a `step-stool' conformation. The nonplanar nature of the Schiff base plays an important role in metal coordination, which leads to partial hydrolysis of the ring structure.

3.
PLoS One ; 17(2): e0263846, 2022.
Article in English | MEDLINE | ID: mdl-35143555

ABSTRACT

External peak power in the countermovement jump is frequently used to monitor athlete training. The gold standard method uses force platforms, but they are unsuitable for field-based testing. However, alternatives based on jump flight time or Newtonian methods applied to inertial sensor data have not been sufficiently accurate for athlete monitoring. Instead, we developed a machine learning model based on characteristic features (functional principal components) extracted from a single body-worn accelerometer. Data were collected from 69 male and female athletes at recreational, club or national levels, who performed 696 jumps in total. We considered vertical countermovement jumps (with and without arm swing), sensor anatomical locations, machine learning models and whether to use resultant or triaxial signals. Using a novel surrogate model optimisation procedure, we obtained the lowest errors with a support vector machine when using the resultant signal from a lower back sensor in jumps without arm swing. This model had a peak power RMSE of 2.3 W·kg-1 (5.1% of the mean), estimated using nested cross validation and supported by an independent holdout test (2.0 W·kg-1). This error is lower than in previous studies, although it is not yet sufficiently accurate for a field-based method. Our results demonstrate that functional data representations work well in machine learning by reducing model complexity in applications where signals are aligned in time. Our optimisation procedure also was shown to be robust can be used in wider applications with low-cost, noisy objective functions.


Subject(s)
Accelerometry/instrumentation , Exercise/physiology , Athletes , Female , Humans , Machine Learning , Male , Young Adult
4.
ACS Omega ; 2(9): 5949-5961, 2017 Sep 30.
Article in English | MEDLINE | ID: mdl-31457849

ABSTRACT

Silica-supported model copper catalysts were prepared by supporting bis(1,5-diphenyl-1,3,5-pentanetrionato)dicopper(II), Cu2(dba)2, on Cab-O-Sil by a batch impregnation technique. This metal complex showed a strong affinity for the silica support, developing monolayer coverages near the value predicted from a consideration of the size and shape of the planar metal complex (2.6 wt % Cu). The supported catalysts were subsequently activated by decomposing the organic ligands at 400 °C in air followed by reduction with 2% H2/He at 250 °C. One sample was prepared having a loading of 3.70 wt % Cu2(dba)2/silica catalyst, and it was examined for the methanol synthesis reaction under the following conditions: 250 °C with an equimolar gas mixture of CO and H2 in a high-pressure batch reactor. Kinetic data over the model catalyst were fit to a rate equation, second order in the limiting reactant (H2), with a pseudo-second-order rate constant k 2[CO]o[H2]o = 0.0957 [h-g total Cu]-1. A control experiment using a commercial catalyst, Cu/ZnO/Al2O3 with a copper loading of 41.20 wt %, showed a value of k 2[CO]o[H2]o = 0.793 [h-g total Cu]-1. A fresh sample of Cu2(dba)2/silica was examined for methanol decomposition reaction at 220 °C. The model catalyst shows a methanol decomposition first-order rate constant greater than that of the commercial Cu/ZnO/Al2O3catalyst: 1.59 × 10-1 [min-g total Cu]-1 versus 9.6 × 10-3 [min-g total Cu]-1. X-ray diffraction analyzes confirm the presence of CuO particles in both catalysts after calcinations. Copper metal particles were found in both catalysts (fractional Cu dispersions were 0.11 and 0.16 on commercial and model catalysts, respectively) after the reduced catalysts were used in both the methanol synthesis and decomposition reactions. Using the values of copper dispersion found in these samples, we recalculated the rate constants for the two reactions per unit surface copper. These refined rate constants showed the same trends as those reported per total amount of Cu. One role of the promoter(s) in the commercial catalyst is the inhibition of the methanol decomposition reaction, thus allowing higher MeOH synthesis reaction rates in those regimes not controlled by thermodynamics.

5.
J Chromatogr A ; 1172(2): 204-8, 2007 Nov 23.
Article in English | MEDLINE | ID: mdl-17959186

ABSTRACT

A laboratory system has been designed, constructed, and validated that reduces the complexity, time required, and data variability associated with catalytic microreactors that require post reaction steps prior to product analysis. In this work, a Varian (Walnut Creek, CA, USA) 3600 GC (gas chromatography) system coupled with a Saturn quadrupole ion trap mass spectrometer was used to perform mass spectral analysis in real-time catalytic cracking reactions. As this was an integrated reactor/analyzer, the GC column was exposed to temperatures beyond the degradation point of the column, and so selective ion storage RF waveform was used to remove the siloxane masses from the spectra. This produced lower detection limits and full scan data for identification. Mass/charge segmentation of the mass spectrometer allowed the complete product identification for electron impact spectra. Hexane was reacted over H-ZSM-5 catalyst for instrument validation. This produced a series of alkanes, alkenes, and aromatics with distributions consistent with that reported for the cracking of hexane.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Mass Spectrometry/instrumentation , Online Systems , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Catalysis , Clinical Laboratory Techniques , Hexanes/chemistry , Mass Spectrometry/methods , Reproducibility of Results , Sensitivity and Specificity
6.
Langmuir ; 20(1): 260-2, 2004 Jan 06.
Article in English | MEDLINE | ID: mdl-15745030

ABSTRACT

Silica nanospheres have been produced by a novel technique where surface Si oxidation states can be adjusted using the ratio of metalloid ions/metalloid atoms in the starting mixture. When the proportions of Si4+/Si0 are equal in the synthesis, the resulting solid is considerably more reactive than Cab-O-Sil toward the phenol hydroxylation reaction and the surface shows an average Si oxidation state of +3. On the other hand, those silica nanospheres, produced from a mixture of Si4+/Si0 = 0.25, showed a lower reactivity comparable to that of Cab-O-Sil which XPS demonstrates has a surprisingly low average Si oxidation state close to +1. We speculate that the silicon surface oxidation state and the number of surface silanol groups play important roles in determining the activity of the solid toward the phenol hydroxylation reaction. In expanding our earlier report4 on the copper-silica system, we establish that the surface chemistry of the silica nanospheres is apparently different from that of fumed, amorphous silica. These results suggest that we are developing a technique that can be generalized to create supported, mixed metal oxides having tunable average surface oxidation states.


Subject(s)
Nanostructures/chemistry , Organometallic Compounds/chemical synthesis , Silicon Dioxide/chemistry , Silicon/chemistry , Microscopy, Electron, Transmission/methods , Molecular Structure , Oxidation-Reduction , Particle Size , Surface Properties , Time Factors
8.
J Org Chem ; 67(7): 2034-41, 2002 Apr 05.
Article in English | MEDLINE | ID: mdl-11925207

ABSTRACT

Acid-catalyzed isomerization of dimethylbiphenyls is determined by the relative stability of intermediate carbocations, rather than the neutral products, and may be predicted by a simple semiempirical method (AM1). A general kinetic model for such isomerizations is suggested in which the rearrangement of an intermediate cation is the rate-limiting step. Control of regiochemistry of dialkylbiphenyls provides a useful entry into high-purity monomers for high-polymer synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...