Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 60(13): 1690-1706, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38252272

ABSTRACT

Efficient storage of thermal energy can be greatly enhanced by the use of phase change materials (PCMs). The selection or development of a useful PCM requires careful consideration of many physical and chemical properties. In this review of our recent studies of PCMs, we show that linking the molecular structures of organic molecules to their physical properties can be used to focus attention on the most useful PCMs, including eutectic mixtures. Two of the major limitations concerning broader use of phase change materials are low thermal conductivity, especially for organic phase change materials, and suitable containment. We have addressed both issues in our recent investigations of novel form-stable composite PCMs with a freeze-cast matrix. The use of thorough experimental investigations, including cycling of materials hundreds or thousands of times through the melt-freeze processes, promotes our goals of advancing the use of PCMs for increased energy efficiency and sustainability.

2.
Inorg Chem ; 61(35): 14086-14094, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36007250

ABSTRACT

A2M3O12-type ceramics are potentially useful in a variety of applications due to their peculiar thermal and mechanical properties. In addition, their intrinsic coefficients of thermal expansion can be finely tuned through different mechanisms. Despite the great influence of extrinsic point defects on physical properties, only a few reports have dealt with their relationship to thermal expansion and thermal conductivity. Extrinsic oxygen vacancies in orthorhombic Al2W3O12, in different concentrations, were formed through heat treatments in argon or hydrogen atmospheres. X-ray powder diffraction, diffuse reflectance spectroscopy, and Raman and electron paramagnetic resonance spectroscopies were used to study the as-formed vacancies, and X-ray photoelectron spectroscopy was employed to propose a charge compensation mechanism. It was found that the intrinsic coefficient of thermal expansion of orthorhombic Al2W3O12 was severely affected by extrinsic oxygen vacancies. Thermal expansion was decreased up to 40% (from 25 to 400 °C) with respect to the extrinsic-point-defect-free counterpart. Unit-cell volumes of defective orthorhombic Al2W3O12 were larger, while their W-O bonds were weaker, likely leading to higher lattice flexibility and enhanced low-energy transverse acoustic modes. Extrinsic oxygen vacancies could be an additional mechanism for fine-tuning the intrinsic coefficients of thermal expansion in A2M3O12-type ceramics and in other framework structures built through two or threefold linkages.

3.
Molecules ; 26(21)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34771044

ABSTRACT

Materials that change phase (e.g., via melting) can store thermal energy with energy densities comparable to batteries. Phase change materials will play an increasing role in reduction of greenhouse gas emissions, by scavenging thermal energy for later use. Therefore, it is useful to have summaries of phase change properties over a wide range of materials. In the present work, we review the relationship between molecular structure and trends in relevant phase change properties (melting temperature, and gravimetric enthalpy of fusion) for about 200 organic compounds from several chemical families, namely alkanes (paraffins), fatty acids, fatty alcohols, esters, diamines, dinitriles, diols, dioic acids, and diamides. We also review availability and cost, chemical compatibility, and thermal and chemical stabilities, to provide practical information for PCM selection. Compounds with even chain alkyl lengths generally give higher melting temperatures, store more thermal energy per unit mass due to more efficient packing, and are of lower cost than the comparable compounds with odd alkyl chains.

4.
Materials (Basel) ; 14(14)2021 Jul 18.
Article in English | MEDLINE | ID: mdl-34300940

ABSTRACT

Materials from theA2M3O12 family are known for their extensive chemical versatility while preserving the polyhedral-corner-shared orthorhombic crystal system, as well as for their consequent unusual thermal expansion, varying from negative and near-zero to slightly positive. The rarest are near-zero thermal expansion materials, which are of paramount importance in thermal shock resistance applications. Ceramic materials with chemistry Al2-xInxW3O12 (x = 0.2-1.0) were synthesized using a modified reverse-strike co-precipitation method and prepared into solid specimens using traditional ceramic sintering. The resulting materials were characterized by X-ray powder diffraction (ambient and in situ high temperatures), differential scanning calorimetry and dilatometry to delineate thermal expansion, phase transitions and crystal structures. It was found that the x = 0.2 composition had the lowest thermal expansion, 1.88 × 10-6 K-1, which was still higher than the end member Al2W3O12 for the chemical series. Furthermore, the AlInW3O12 was monoclinic phase at room temperature and transformed to the orthorhombic form at ca. 200 °C, in contrast with previous reports. Interestingly, the x = 0.2, x = 0.4 and x = 0.7 materials did not exhibit the expected orthorhombic-to-monoclinic phase transition as observed for the other compositions, and hence did not follow the expected Vegard-like relationship associated with the electronegativity rule. Overall, compositions within the Al2-xInxW3O12 family should not be considered candidates for high thermal shock applications that would require near-zero thermal expansion properties.

5.
Angew Chem Int Ed Engl ; 60(3): 1546-1549, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-32970365

ABSTRACT

Recent density-functional theory (DFT) calculations raised the possibility that diamond could be degenerate with graphite at very low temperatures. Through high-accuracy calorimetric experiments closing gaps in available data, we reinvestigate the relative thermodynamic stability of diamond and graphite. For T<400 K, graphite is always more stable than diamond at ambient pressure. At low temperatures, the stability is enthalpically driven, and entropy terms add to the stability at higher temperatures. We also carried out DFT calculations: B86bPBE-25X-XDM//B86bPBE-XDM and PBE0-XDM//PBE-XDM results overlap with the experimental -TΔS results and bracket the experimental values of ΔH and ΔG, displaced by only about 2× the experimental uncertainty. Revised values of the standard thermodynamic functions for diamond are Δf Ho =-2150±150 J mol-1 , Δf So =3.44±0.03 J K-1 mol-1 and Δf Go =-3170±150 J mol-1 .

6.
Data Brief ; 25: 104247, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31463342

ABSTRACT

This article presents several micromechanical models to predict the Young's modulus and the coefficient of thermal expansion of titanate nanotube/Y2W3O12/HDPE composites. The equations and assumptions of the selected micromechanical models are described in detail for this ternary system. Data of the elastic constants, coefficient of thermal expansion of composite components and other associated parameters, obtained either by literature survey or processing of literature information, are compiled in this work. For further interpretation of the data presented in this article, please see our research article entitled "The effect of titanate nanotube/Y2W3O12 hybrid fillers on mechanical and thermal properties of HDPE-based composites" (Pontón et al., 2019).

7.
J Phys Chem B ; 123(32): 7043-7054, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31322886

ABSTRACT

Saturated fatty acids are used in many consumer products and have considerable promise as phase change materials for thermal energy storage, in part because they crystallize with minimal supercooling. The latter property correlates with the existence of molecular clusters in the liquid; when heated above a threshold temperature, clusters do not immediately re-form on cooling, and supercooling results. Raman spectroscopy, density functional theory calculations, and small-angle X-ray scattering were used to reveal the size, structure, and temperature dependence of the clusters. We found that the liquid phases of fatty acids contain some ordering at all temperatures, with the molecules showing, on average, short-range alignment along their long axes. At temperatures below the threshold temperature for increased susceptibility to supercooling, clusters of more highly ordered fatty acid dimers, several hundred molecules in size, exist in the liquid. Within these clusters, the alkyl chains of the fatty acid dimers are essentially completely inserted between the alkyl chains of their longitudinal neighbors. Above the threshold temperature, fatty acid clusters are smaller in size and number. We explored how the fatty acid clusters promote bulk crystallization and show quantitatively that their presence reduces the energy barrier to crystal growth, likely by a particle-attachment-type mechanism.

8.
J Phys Chem B ; 122(51): 12386-12395, 2018 12 27.
Article in English | MEDLINE | ID: mdl-30507193

ABSTRACT

Saturated fatty acids are an exceptionally important class of liquids, used in many consumer products and suggested as phase change materials (PCMs) for thermal energy storage, in part because they crystallize with minimal supercooling. Here we investigate fatty acid nucleation to understand why crystallization is so facile, as a step toward identifying potential mechanisms for the suppression of supercooling in other PCMs. We find that fatty acid supercooling can be induced only if the liquid is first heated above a material-dependent threshold temperature. NMR spin-lattice relaxation time studies show that the average mobility of the alkyl chains in the fatty acids increases more rapidly with temperature above the supercooling threshold temperature, and NMR T1 hysteresis also sets in at that temperature. Measurements of the real portion of the dielectric constant as a function of temperature show that a liquid fatty acid heated far above its melting point behaves with an apparent temperature upon cooling that is higher than the actual temperature, when compared to its behavior at the same temperature upon heating. Our results suggest that molecular clusters in the liquid fatty acids break apart when the liquids are heated above their threshold temperature and do not immediately re-form on cooling. The breakup of clusters leads to an increase in the mobility of the fatty acid molecules. Because the clusters do not re-form quickly on subsequent cooling, nucleation does not occur, and substantial supercooling results.

9.
Data Brief ; 17: 724-730, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29511716

ABSTRACT

The data presented in this article include the molar masses, melting temperatures, latent heats of fusion and temperature-dependent heat capacities of fifteen fatty acid phase change materials (PCMs). The data are used in conjunction with the thermodynamic models discussed in Kahwaji and White (2018) [1] to develop a computational tool that calculates the eutectic compositions and thermal properties of eutectic mixtures of PCMs. The computational tool is part of this article and consists of a Microsoft Excel® file available in Mendeley Data repository [2]. A description of the computational tool along with the properties of nearly 100 binary mixtures of fatty acid PCMs calculated using this tool are also included in the present article. The Excel® file is designed such that it can be easily modified or expanded by users to calculate the properties of eutectic mixtures of other classes of PCMs.

10.
Phys Chem Chem Phys ; 18(44): 30652-30661, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27790661

ABSTRACT

We report calculated elastic tensors, axial Grüneisen parameters, and thermal stress distributions in Al2Mo3O12, ZrMgMo3O12, Sc2Mo3O12, and Y2Mo3O12, a series of isomorphic materials for which the coefficients of thermal expansion range from low-positive to negative. Thermal stress in polycrystalline materials arises from interactions between thermal expansion and mechanical properties, and both can be highly anisotropic. Thermal expansion anisotropy was found to be correlated with elastic anisotropy: axes with negative thermal expansion were less compliant. Calculations of axial Grüneisen parameters revealed that the thermal expansion anisotropy in these materials is in part due to the Poisson effect. Models of thermal stress due to thermal expansion anisotropy in polycrystals following cooling showed thermal stresses of sufficient magnitude to cause microcracking in all cases. The thermal expansion anisotropy was found to couple to elastic anisotropy, decreasing the bulk coefficient of thermal expansion and leading to lognormal extremes of the thermal stress distributions.

11.
Phys Chem Chem Phys ; 18(2): 1185-90, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26660277

ABSTRACT

Bulk PCBM has exceptionally low thermal conductivity, 0.07 W m(-1) K(-1) at room temperature. We show that its ultralow thermal conductivity is an intrinsic property. Based on results for thermal conductivity and heat capacity measurements down to <2 K, along with Raman spectroscopy and dilatometry, a new model for minimum thermal conductivity was developed. In the model the thermal energy is transferred between entities of phonons oscillating in a range of frequencies, and limited by the atomic density and the phonon mean speed. The model accurately represents the low thermal conductivity for both PCBM and C60/C70.

12.
Angew Chem Int Ed Engl ; 54(12): 3626-9, 2015 Mar 16.
Article in English | MEDLINE | ID: mdl-25619645

ABSTRACT

Boron is an important element, used in applications from superhard materials to superconductors. Boron exists in several forms (allotropes) and, surprisingly, it was not known which form (α or ß) is stable at ambient conditions. Through experiment, we quantify the relative stability of α-boron and ß-boron as a function of temperature. The ground-state energies of α-boron and ß-boron are nearly identical. For all temperatures up to 2000 K, the complicated ß-boron structure is more stable than the simpler α-boron structure at ambient pressure. Below 1000 K, ß-boron is entropically stabilized with respect to α-boron owing to its partially occupied sites, whereas at higher temperatures ß-boron is enthalpically stabilized with respect to α-boron. We show that α-boron only becomes stable on application of pressure.

13.
Proc Math Phys Eng Sci ; 470(2171): 20140387, 2014 Nov 08.
Article in English | MEDLINE | ID: mdl-25383026

ABSTRACT

We present the results of experimental determination of the heat capacity of the pyrochlore Er2Ti2O7 as a function of temperature (0.35-300 K) and magnetic field (up to 9 T), and for magnetically diluted solid solutions of the general formula (Er1-x Y x )2Ti2O7 (x≤0.471). On either doping or increase of magnetic field, or both, the Néel temperature first shifts to lower temperature until a critical point above which there is no well-defined transition but a Schottky-like anomaly associated with the splitting of the ground state Kramers doublet. By taking into account details of the lattice contribution to the heat capacity, we accurately isolate the magnetic contribution to the heat capacity and hence to the entropy. For pure Er2Ti2O7 and for (Er1-x Y x )2Ti2O7, the magnetic entropy as a function of temperature evolves with two plateaus: the first at [Formula: see text], and the other at [Formula: see text]. When a very high magnetic field is applied, the first plateau is washed out. The influence of dilution at low values is similar to the increase of magnetic field, as we show by examination of the critical temperature versus critical field curve in reduced terms.

14.
J Phys Condens Matter ; 25(43): 435401, 2013 Oct 30.
Article in English | MEDLINE | ID: mdl-24096991

ABSTRACT

Thermal properties of a series of type II clathrates of the formula NaxSi136 with 0 < x < 24 and Na guests occupying the Si cages have been investigated over the temperature range from 2 to 300 K. Heat capacity and thermal conductivity results show that the structure is remarkably responsive to the loading of Na guests. The response is phononic: the host lattice expands in a non-monotonic way, and first stiffens, then relaxes at low loading into the larger Si28 cages (x < 9), then stiffens again as the Na concentration increases further. The response is also electronic, through changes in electronic properties as additional Na is loaded into the smaller Si20 cages at high loading (x > 9). In total, the influence of the guest loading illustrates the complexities of structure-property relations in a guest-host system.

15.
J Struct Biol ; 184(3): 454-63, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24121160

ABSTRACT

Nacre is the iridescent inner lining of many mollusk shells, with a unique lamellar structure at the sub-micron scale, and remarkable resistance to fracture. Despite extensive studies, nacre formation mechanisms remain incompletely understood. Here we present 20-nm, 2°-resolution polarization-dependent imaging contrast (PIC) images of shells from 15 mollusk species, mapping nacre tablets and their orientation patterns. These data show where new crystal orientations appear and how similar orientations propagate as nacre grows. In all shells we found stacks of co-oriented aragonite (CaCO3) tablets arranged into vertical columns or staggered diagonally. Near the nacre-prismatic (NP) boundary highly disordered spherulitic aragonite is nucleated. Overgrowing nacre tablet crystals are most frequently co-oriented with the underlying aragonite spherulites, or with another tablet. Away from the NP-boundary all tablets are nearly co-oriented in all species, with crystal lattice tilting, abrupt or gradual, always observed and always small (plus or minus 10°). Therefore aragonite crystal growth in nacre is near-epitaxial. Based on these data, we propose that there is one mineral bridge per tablet, and that "bridge tilting" may occur without fracturing the bridge, hence providing the seed from which the next tablet grows near-epitaxially.


Subject(s)
Animal Shells/ultrastructure , Mollusca , Nacre/analysis , Animal Shells/chemistry , Animals , Finite Element Analysis , Image Processing, Computer-Assisted , Nacre/chemistry , Photoelectron Spectroscopy/methods
16.
J Nanosci Nanotechnol ; 10(12): 8151-7, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21121309

ABSTRACT

Single-walled carbon nanotube films are promising candidates for applications requiring transparent conductors due to their low sheet resistance and high transparency in the visible region. Vacuum filtration is a common and easy to implement technique to produce such films but it is complicated by the need to transfer the films to desired substrates. Here we report conditions under which single-walled carbon nanotube films produced by vacuum filtration detach from the filter membrane upon submersion into water, providing a facile method to transfer filtration-produced nanotube films to desired substrates. Sheet resistance and transparency measurements show that these films are competitive with other high conductivity films made through more cumbersome procedures. Films post-treated with nitric acid or made with acid pre-treated nanotubes have superior performance to those made with high-purity nanotubes without any acid treatment. Thermal imaging by scanning thermal microscopy indicates that heat dissipation by the film is comparable to that of a glass substrate.

17.
J Chem Phys ; 129(17): 174502, 2008 Nov 07.
Article in English | MEDLINE | ID: mdl-19045353

ABSTRACT

We report the results of systematic investigations of the influence of thermal history and other factors on crystallization of a model clathrate hydrate (cyclopentane hydrate) studied as water-in-oil and oil-in-water emulsions to remove the nucleation influence of substrates other than ice and hydrates. Hydrate and ice seem to form simultaneously under the conditions of these experiments, with ice forming preferentially. Thermal treatment, melting the ice, and leaving only the hydrate, promotes further hydrate formation. Not all the hydrate formed can be accounted for by the recrystallization of water freed by melting ice.

18.
Dent Mater ; 24(11): 1468-76, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18448161

ABSTRACT

OBJECTIVES: Excessive heat produced during the curing of light-activated dental restorations may injure the dental pulp. The maximum temperature excursion at the pulp-dentin junction provides a means to assess the risk of thermal injury. In this investigation we develop and evaluate a model to simulate temperature increases during light-curing of dental restorations and use it to investigate the influence of several factors on the maximum temperature excursion along the pulp-dentin junction. METHODS: Finite element method modeling, using COMSOL 3.3a, was employed to simulate temperature distributions in a 2D, axisymmetric model tooth. The necessary parameters were determined from a combination of literature reports and our measurements of enthalpy of polymerization, heat capacity, density, thermal conductivity and reflectance for several dental composites. Results of the model were validated using in vitro experiments. RESULTS: Comparisons with in vitro experiments indicate that the model provides a good approximation of the actual temperature increases. The intensity of the curing light, the curing time and the enthalpy of polymerization of the resin composite were the most important factors. The composite is a good insulator and the greatest risk occurs when using the light to cure the thin layer of bonding resin or in deep restorations that do not have a liner to act as a thermal barrier. SIGNIFICANCE: The results show the importance of considering temperature increases when developing curing protocols. Furthermore, we suggest methods to minimize the temperature increase and hence the risk of thermal injury. The physical properties measured for several commercial composites may be useful in other studies.


Subject(s)
Computer Simulation , Dental Pulp/injuries , Dental Stress Analysis , Dentin/injuries , Light-Curing of Dental Adhesives/adverse effects , Composite Resins/adverse effects , Dental Stress Analysis/methods , Finite Element Analysis , Hot Temperature/adverse effects , Light/adverse effects , Thermal Conductivity
19.
J Am Chem Soc ; 125(8): 2195-9, 2003 Feb 26.
Article in English | MEDLINE | ID: mdl-12590547

ABSTRACT

The development of green, selective, and efficient catalysts, which can aerobically oxidize a variety of alcohols to their corresponding aldehydes and ketones, is of both economic and environmental significance. We report here the synthesis of a novel aerobic oxidation catalyst, a zeolite-confined nanometer-sized RuO(2) (RuO(2)-FAU), by a one-step hydrothermal method. Using the spatial constraints of the rigid zeolitic framework, we sucessfully incorporated RuO(2) nanoparticles (1.3 +/- 0.2 nm) into the supercages of faujasite zeolite. Ru K-edge X-ray absorption fine structure results indicate that the RuO(2) nanoclusters anchored in the zeolite are structurally similar to highly hydrous RuO(2); that is, there is a two-dimensional structure of independent chains, in which RuO(6) octahedra are connected together by two shared oxygen atoms. In our preliminary catalytic studies, we find that the RuO(2) nanoclusters exhibit extraordinarily high activity and selectivity in the aerobic oxidation of alcohols under mild conditions, for example, air and ambient pressure. The physically trapped RuO(2) nanoclusters cannot diffuse out of the relatively narrow channels/pores of the zeolite during the catalytic process, making the catalyst both stable and reusable.

SELECTION OF CITATIONS
SEARCH DETAIL
...