Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 23(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38067824

ABSTRACT

We present a novel architecture for the design of single-photon detecting arrays that captures relative intensity or timing information from a scene, rather than absolute. The proposed method for capturing relative information between pixels or groups of pixels requires very little circuitry, and thus allows for a significantly higher pixel packing factor than is possible with per-pixel TDC approaches. The inherently compressive nature of the differential measurements also reduces data throughput and lends itself to physical implementations of compressed sensing, such as Haar wavelets. We demonstrate this technique for HDR imaging and LiDAR, and describe possible future applications.

2.
Muscle Nerve ; 54(2): 211-9, 2016 08.
Article in English | MEDLINE | ID: mdl-26789134

ABSTRACT

INTRODUCTION: In this study we investigated muscle magnetic resonance imaging in congenital myasthenic syndromes (CMS). METHODS: Twenty-six patients with 9 CMS subtypes and 10 controls were imaged. T1-weighted (T1w) and short-tau inversion recovery (STIR) 3-Tesla MRI images obtained at thigh and calf levels were scored for severity. RESULTS: Overall mean the T1w score was increased in GFPT1 and DPAGT1 CMS. T1w scans of the AChR-deficiency, COLQ, and CHAT subjects were indistinguishable from controls. STIR images from CMS patients did not differ significantly from those of controls. Mean T1w score correlated with age in the CMS cohort. CONCLUSIONS: MRI appearances ranged from normal to marked abnormality. T1w images seem to be especially abnormal in some CMS caused by mutations of proteins involved in the glycosylation pathway. A non-selective pattern of fat infiltration or a normal-appearing scan in the setting of significant clinical weakness should suggest CMS as a potential diagnosis. Muscle MRI could play a role in differentiating CMS subtypes. Muscle Nerve 54: 211-219, 2016.


Subject(s)
Magnetic Resonance Imaging , Muscle, Skeletal/diagnostic imaging , Myasthenic Syndromes, Congenital/diagnostic imaging , Myasthenic Syndromes, Congenital/pathology , Adolescent , Adult , Female , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Myasthenic Syndromes, Congenital/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL