Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Appl Microbiol ; 93: 1-44, 2015.
Article in English | MEDLINE | ID: mdl-26505687

ABSTRACT

The role of fungi in shaping ecosystems is well evidenced and there is growing recognition of their importance among scientists and the general public. Establishing and separating the role of key local (soil chemical, biological, and physical properties) and global (climate, dispersal limitation) drivers in fungal community structure and functioning is currently a source of frustration to mycologists. The quest to determine niche processes and environmental characteristics shaping fungal community structure, known to be important for plant and animal communities, is proving difficult, resulting in the acknowledgment that niche neutral processes (climate, dispersal limitations) may dominate. The search for predictable patterns in fungal community structure may have been restricted as the "appropriate" scales at which to measure community structure and characterize the environment have not been fully determined yet, and the focus on taxonomy makes it difficult to link environmental characteristics to fungal traits. While key determinants of microbial community composition have been uncovered for some functional groups, the differential response of functional groups is largely unknown. Before we can truly understand what drives the development of microbial community structure, an understanding of the autecology of major fungal taxa and how they interact with their immediate environment (from the micro- up to kilometer scale) is urgently needed. Furthermore, key information and empirical data is missing at the microscale due to experimental difficulties in mapping this heterogeneous and opaque environment. We therefore present a framework that would help generate this much-needed empirical data and information at the microscale, together with modeling approaches to link the spatial and temporal scales. The latter is important as we propose that there is much to be gained by linking our understanding of fungal community responses across scales, in order to develop species and community-environment-function predictive models.


Subject(s)
Ecosystem , Fungi/growth & development , Models, Biological , Biodiversity , Climate , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Soil/chemistry
2.
IMA Fungus ; 1(2): 155-9, 2010 Dec.
Article in English | MEDLINE | ID: mdl-22679574

ABSTRACT

This contribution, based on a Special Interest Group session held during IMC9, focuses on physiological based models of filamentous fungal colony growth and interactions. Fungi are known to be an important component of ecosystems, in terms of colony dynamics and interactions within and between trophic levels. We outline some of the essential components necessary to develop a fungal ecology: a mechanistic model of fungal colony growth and interactions, where observed behaviour can be linked to underlying function; a model of how fungi can cooperate at larger scales; and novel techniques for both exploring quantitatively the scales at which fungi operate; and addressing the computational challenges arising from this highly detailed quantification. We also propose a novel application area for fungi which may provide alternate routes for supporting scientific study of colony behaviour. This synthesis offers new potential to explore fungal community dynamics and the impact on ecosystem functioning.

3.
J R Soc Interface ; 5(23): 603-15, 2008 Jun 06.
Article in English | MEDLINE | ID: mdl-17956853

ABSTRACT

Indeterminate organisms have received comparatively little attention in theoretical ecology and still there is much to be understood about the origins and consequences of community structure. The fungi comprise an entire kingdom of life and epitomize the indeterminate growth form. While interactions play a significant role in shaping the community structure of indeterminate organisms, to date most of our knowledge relating to fungi comes from observing interaction outcomes between two species in two-dimensional arena experiments. Interactions in the natural environment are more complex and further insight will benefit from a closer integration of theory and experiment. This requires a modelling framework capable of linking genotype and environment to community structure and function. Towards this, we present a theoretical model that replicates observed interaction outcomes between fungal colonies. The hypotheses underlying the model propose that interaction outcome is an emergent consequence of simple and highly localized processes governing rates of uptake and remobilization of resources, the metabolic cost of production of antagonistic compounds and non-localized transport of internal resources. The model may be used to study systems of many interacting colonies and so provides a platform upon which the links between individual-scale behaviour and community-scale function in complex environments can be built.


Subject(s)
Ecosystem , Fungi/physiology , Models, Biological , Computer Simulation
4.
Proc Biol Sci ; 272(1573): 1727-34, 2005 Aug 22.
Article in English | MEDLINE | ID: mdl-16087429

ABSTRACT

Fungi are one of the most important and widespread components of the biosphere, and are essential for the growth of over 90% of all vascular plants. Although they are a separate kingdom of life, we know relatively little about the origins of their ubiquitous existence. This reflects a wider ignorance arising from their status as indeterminate organisms epitomized by extreme phenotypic plasticity that is essential for survival in complex environments. Here we show that the fungal phenotype may have its origins in the defining characteristic of indeterminate organisms, namely their ability to recycle locally immobilized internal resources into a mobilized form capable of being directed to new internal sinks. We show that phenotype can be modelled as an emergent phenomenon resulting from the interplay between simple local processes governing uptake and remobilization of internal resources, and macroscopic processes associated with their transport. Observed complex growth forms are reproduced and the sensitive dependence of phenotype on environmental context may be understood in terms of nonlinearities associated with regulation of the recycling apparatus.


Subject(s)
Adaptation, Physiological , Environment , Fungi/cytology , Models, Biological , Mycelium/cytology , Mycelium/growth & development , Phenotype , Biological Evolution , Fungi/growth & development , Genotype
5.
FEMS Microbiol Lett ; 228(2): 281-6, 2003 Nov 21.
Article in English | MEDLINE | ID: mdl-14638435

ABSTRACT

Molecular and morphological parameters of Serpula lacrymans isolates from various sites in the built environment in Europe and Australia were compared to similar parameters of 'wild' isolates from India, the Sumava Mountains (Czech Republic) and Mount Shasta (USA). The Indian, Czech Republic and all of the building isolates bar one showed identity in both molecular and morphological features. The Australian and the USA isolates (BF-050 and USA'94 respectively) showed specific morphological differences and could be separated on the basis of randomly amplified polymorphic deoxyribonucleic acid polymerase chain reaction (RAPD PCR) with the USA isolate being least closely related to the S. lacrymans type strain of FPRL12C. ITS sequence data revealed two base differences between FPRL12C and BF-050 in the 673 sequenced, nine differences between FPRL12C and USA'94 and 16 differences between USA'94 and the closely related organism Serpula himantioides. The possible evolutionary relationships between the various isolates are discussed along with suggestions for the origin of S. lacrymans as a scourge of the built environment in many temperate areas of the world.


Subject(s)
Basidiomycota/classification , Basidiomycota/isolation & purification , Australia , Base Sequence , Basidiomycota/cytology , Basidiomycota/genetics , Czech Republic , DNA Fingerprinting , DNA, Fungal/analysis , DNA, Fungal/isolation & purification , India , Molecular Sequence Data , Phylogeny , Random Amplified Polymorphic DNA Technique , Sequence Alignment , Sequence Analysis, DNA , United States
6.
FEMS Microbiol Ecol ; 39(1): 9-16, 2002 Jan 01.
Article in English | MEDLINE | ID: mdl-19709179

ABSTRACT

Abstract Consequences of initial spatial organisation of model fungal communities upon their spatio-temporal development were investigated. Dynamics of prescribed two- and three-species 'communities' developing on tessellated agar tile model systems were analysed in terms of literal maps, principal component analyses, or as the proportion of species extant within tiles. It was established that for two-species interactions of equal patch size, large-scale (i.e. many constituent tiles) behaviour could be extrapolated from the relevant small-scale (i.e. pairs of tiles) interactions. However, relative patch sizes (scale) of species within tessellations influenced the times taken by individuals to colonise tiles and, hence, temporal behaviour of the system. Outcome of arrangements involving three species of equal patch size and inoculum potential, and prescribed with different mixing patterns, could not be directly extrapolated by reference to the outcome of pair-wise interactions between constituent species. Three-species arrangements attempt to limit assembly of lateral aggregates of individuals (patch size) and hence any effects of tile colonisation times, so as to reveal effects of nearest neighbour context within the complex community. Such arrangements indicate that spatial configuration of inoculum influences community development and reproducibility. They also suggest that spatial distribution of species affects persistence of individuals, which would otherwise be expected to be eliminated from the system. Two-species interactions appeared generally more reproducible than those comprising three species, and the sensitivity of fungal community development to temperature was not solely associated with influence on colony extension rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...