Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Res ; 94(4): 453-61, 2004 Mar 05.
Article in English | MEDLINE | ID: mdl-14726474

ABSTRACT

The natriuretic peptides, including human B-type natriuretic peptide (BNP), have been implicated in the regulation of cardiac remodeling. Because transforming growth factor-beta (TGF-beta) is associated with profibrotic processes in heart failure, we tested whether BNP could inhibit TGF-beta-induced effects on primary human cardiac fibroblasts. BNP inhibited TGF-beta-induced cell proliferation as well as the production of collagen 1 and fibronectin proteins as measured by Western blot analysis. cDNA microarray analysis was performed on RNA from cardiac fibroblasts incubated in the presence or absence of TGF-beta and BNP for 24 and 48 hours. TGF-beta, but not BNP, treatment resulted in a significant change in the RNA profile. BNP treatment resulted in a remarkable reduction in TGF-beta effects; 88% and 85% of all TGF-beta-regulated mRNAs were affected at 24 and 48 hours, respectively. BNP opposed TGF-beta-regulated genes related to fibrosis (collagen 1, fibronectin, CTGF, PAI-1, and TIMP3), myofibroblast conversion (alpha-smooth muscle actin 2 and nonmuscle myosin heavy chain), proliferation (PDGFA, IGF1, FGF18, and IGFBP10), and inflammation (COX2, IL6, TNFalpha-induced protein 6, and TNF superfamily, member 4). Lastly, BNP stimulated the extracellular signal-related kinase pathway via cyclic guanosine monophosphate-dependent protein kinase signaling, and two mitogen-activated protein kinase kinase inhibitors, U0126 and PD98059, reversed BNP inhibition of TGF-beta-induced collagen-1 expression. These findings demonstrate that BNP has a direct effect on cardiac fibroblasts to inhibit fibrotic responses via extracellular signal-related kinase signaling, suggesting that BNP functions as an antifibrotic factor in the heart to prevent cardiac remodeling in pathological conditions.


Subject(s)
Fibroblasts/drug effects , Gene Expression Regulation/drug effects , Natriuretic Peptide, Brain/pharmacology , Transforming Growth Factor beta/antagonists & inhibitors , Ventricular Remodeling , Adolescent , Blotting, Western , Butadienes/pharmacology , Cell Division , Cells, Cultured/drug effects , Cyclic GMP/biosynthesis , Enzyme Inhibitors/pharmacology , Extracellular Matrix Proteins/biosynthesis , Extracellular Matrix Proteins/genetics , Fibrosis , Flavonoids/pharmacology , Gene Expression Profiling , Humans , Inflammation , MAP Kinase Signaling System/drug effects , Male , Middle Aged , Muscle Proteins/biosynthesis , Muscle Proteins/genetics , Natriuretic Peptide, Brain/physiology , Nitriles/pharmacology , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...