Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Ecol ; 90(7): 1727-1741, 2021 07.
Article in English | MEDLINE | ID: mdl-33792923

ABSTRACT

Changes in biophysical conditions through time generate spatial and temporal variability in habitat quality across landscapes. For river ecosystems, researchers are increasingly able to characterize spatial and temporal patterns in habitat conditions, referred to as shifting habitat mosaics, yet rarely demonstrate how this translates into corresponding biological processes such as organism growth and production. We assessed spatial patterns and processes determining seasonal changes in juvenile Chinook Salmon Oncorhynchus tshawytscha size, growth and production over 30-40 km in two NE Oregon subbasins. We quantified seasonal patterns of growth by combining estimated emergence dates and body size distributions in July and September. We then used analysis of bioenergetics, empirical fish diets and spatial models incorporating temperature, habitat and population density to evaluate mechanisms driving spatiotemporal patterns of growth. Lastly, we quantified seasonal contributions to individual fish growth and to total production as a function of position within the stream network. Spatial heterogeneity in incubation temperatures corresponded to later estimated emergence timing with distance upstream in both subbasins. During spring, estimated growth rates decreased with distance upstream, and coupled with emergence patterns, resulted in pronounced longitudinal gradients in body size by July. During summer, spatial patterns of growth reversed, with greater diet ration sizes and growth efficiencies upstream than downstream. These opposing spatiotemporal patterns of emergence timing and seasonal growth rates produced longitudinal gradients in the proportion of fish growth achieved in spring versus summer, with up to 80% of an individual's growth occurring in spring at downstream sites but as low as 10% at upstream sites. Coupling longitudinal patterns of fish density and growth revealed that in one subbasin the majority (65%) of total production occurred in spring, while in the other, in which fish were concentrated in headwaters, the majority (60%) of production occurred in summer. While recent work has emphasized inter-annual shifts in fish production across large spatial scales, this study demonstrates that longitudinal gradients of fish growth and production can reverse across seasons, and reveals important contributions of warmer, downstream habitats to overall production that occurred during cooler times of the year.


Subject(s)
Ecosystem , Rivers , Animals , Oregon , Seasons , Temperature
2.
J Environ Manage ; 188: 212-227, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27984794

ABSTRACT

Understanding how stream temperature responds to restoration of riparian vegetation and channel morphology in context of future climate change is critical for prioritizing restoration actions and recovering imperiled salmon populations. We used a deterministic water temperature model to investigate potential thermal benefits of riparian reforestation and channel narrowing to Chinook Salmon populations in the Upper Grande Ronde River and Catherine Creek basins in Northeast Oregon, USA. A legacy of intensive land use practices in these basins has significantly reduced streamside vegetation and increased channel width across most of the stream network, resulting in water temperatures that far exceed the optimal range for salmon growth and survival. By combining restoration scenarios with climate change projections, we were able to evaluate whether future climate impacts could be offset by restoration actions. A combination of riparian restoration and channel narrowing was predicted to reduce peak summer water temperatures by 6.5 °C on average in the Upper Grande Ronde River and 3.0 °C in Catherine Creek in the absence of other perturbations. These results translated to increases in Chinook Salmon parr abundance of 590% and 67% respectively. Although projected climate change impacts on water temperature for the 2080s time period were substantial (i.e., median increase of 2.7 °C in the Upper Grande Ronde and 1.5 °C in Catherine Creek), we predicted that basin-wide restoration of riparian vegetation and channel width could offset these impacts, reducing peak summer water temperatures by about 3.5 °C in the Upper Grande Ronde and 1.8 °C in Catherine Creek. These results underscore the potential for riparian and stream channel restoration to mitigate climate change impacts to threatened salmon populations in the Pacific Northwest.


Subject(s)
Climate Change , Conservation of Natural Resources , Models, Theoretical , Salmon , Animals , Oregon , Population Dynamics , Rivers , Seasons , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...