Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
2.
Chem Biol Interact ; 166(1-3): 10-4, 2007 Mar 20.
Article in English | MEDLINE | ID: mdl-17324391

ABSTRACT

Over 95% of butadiene is produced as a by-product of ethylene production from steam crackers. The crude C4 stream isolated from the steam cracking process is fed to butadiene extraction units, where butadiene is separated from the other C4s by extractive distillation. The amount of crude C4s produced in steam cracking is dependent on the composition of the feed to the cracking unit. Heavier feeds, such as naphtha, yield higher amounts of C4s and butadiene than do lighter feeds. Crackers using light feeds typically produce low quantities of C4s and do not have butadiene extraction units. Overall butadiene capacity is determined by ethylene cracker operating rates, the type of feed being cracked, and availability of butadiene extraction capacity. Global butadiene capacity is approximately 10.5 million metric tons, and global production is approximately 9 million metric tons [Chemical Marketing Associates, Inc. (CMAI), 2005 World Butadiene Analysis, Chemical Marketing Associates, Inc. (CMAI), 2005]. Crude C4s are traded globally, with the United States being the only significant net importer. Finished butadiene is also traded globally, with the largest exporters being Canada, Western Europe, Saudi Arabia and Korea. The largest net importers are Mexico, the United States and China. The global demand for butadiene is approximately 9 million metric tons [Chemical Marketing Associates, Inc. (CMAI), 2005 World Butadiene Analysis, Chemical Marketing Associates, Inc. (CMAI), 2005]. Production of styrene-butadiene rubber and polybutadiene rubber accounts for about 54% of global butadiene demand, with tire production being the single most important end use of butadiene synthetic rubbers. Other major butadiene derivatives are acrylonitrile-butadiene-styrene (ABS) and styrene butadiene latex (about 24% of demand combined).


Subject(s)
Butadienes/chemical synthesis , Butadienes/isolation & purification , Carcinogens/chemical synthesis , Chemical Industry
3.
Nature ; 405(6787): 673-6, 2000 Jun 08.
Article in English | MEDLINE | ID: mdl-10864321

ABSTRACT

When a mantle plume interacts with a mid-ocean ridge, both are noticeably affected. The mid-ocean ridge can display anomalously shallow bathymetry, excess volcanism, thickened crust, asymmetric sea-floor spreading and a plume component in the composition of the ridge basalts. The hotspot-related volcanism can be drawn closer to the ridge, and its geochemical composition can also be affected. Here we present Sr-Nd-Pb isotopic analyses of samples from the next-to-oldest seamount in the Hawaiian hotspot track, the Detroit seamount at 51 degrees N, which show that, 81 Myr ago, the Hawaiian hotspot produced volcanism with an isotopic signature indistinguishable from mid-ocean ridge basalt. This composition is unprecedented in the known volcanism from the Hawaiian hotspot, but is consistent with the interpretation from plate reconstructions that the hotspot was located close to a mid-ocean ridge about 80 Myr ago. As the rising mantle plume encountered the hot, low-viscosity asthenosphere and hot, thin lithosphere near the spreading centre, it appears to have entrained enough of the isotopically depleted upper mantle to overwhelm the chemical characteristics of the plume itself. The Hawaiian hotspot thus joins the growing list of hotspots that have interacted with a rift early in their history.

SELECTION OF CITATIONS
SEARCH DETAIL
...