Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr Biochem ; 67: 90-100, 2019 05.
Article in English | MEDLINE | ID: mdl-30856468

ABSTRACT

Mixtures of the two major conjugated linoleic acid (CLA) isomers trans-10,cis-12-CLA and cis-9,trans-11-CLA are used as over the counter supplements for weight loss. Because of the reported adverse effects of CLA on insulin sensitivity in some mouse studies, we sought to compare the impact of dietary t10c12-CLA and c9t11-CLA on liver, adipose tissue, and systemic metabolism of adult lean mice. We fed 8 week-old C57Bl/6J male mice with low fat diets (10.5% Kcal from fat) containing 0.8% t10c12-CLA or c9t11-CLA for 9 or 38 days. Diets containing c9t11-CLA had minimal impact on the endpoints studied. However, 7 days after starting the t10c12-CLA diet, we observed a dramatic reduction in fat mass measured by NMR spectroscopy, which interestingly rebounded by 38 days. This rebound was apparently due to a massive accumulation of lipids in the liver, because adipose tissue depots were visually undetectable. Hepatic steatosis and the disappearance of adipose tissue after t10c12-CLA feeding was associated with elevated plasma insulin levels and insulin resistance, compared to mice fed a control diet or c9t11-CLA diet. Unexpectedly, despite being insulin resistant, mice fed t10c12-CLA had normal levels of blood glucose, without signs of impaired glucose clearance. Hepatic gene expression and fatty acid composition suggested enhanced hepatic de novo lipogenesis without an increase in expression of gluconeogenic genes. These data indicate that dietary t10c12-CLA may alter hepatic glucose and lipid metabolism indirectly, in response to the loss of adipose tissue in mice fed a low fat diet.


Subject(s)
Glucose/metabolism , Linoleic Acids, Conjugated/pharmacology , Lipid Metabolism/drug effects , Liver/drug effects , Adipose Tissue/drug effects , Adipose Tissue/physiology , Animals , Dyslipidemias/chemically induced , Fatty Acids/metabolism , Gene Expression Regulation/drug effects , Glucose Intolerance/chemically induced , Insulin Resistance , Isomerism , Linoleic Acids, Conjugated/adverse effects , Lipodystrophy/chemically induced , Lipodystrophy/genetics , Lipogenesis/drug effects , Liver/metabolism , Male , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...