Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Environ Assess Manag ; 12(4): 782-92, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27156081

ABSTRACT

The "in-stream exposure model" iSTREEM(®) , a Web-based model made freely available to the public by the American Cleaning Institute, provides a means to estimate concentrations of "down-the-drain" chemicals in effluent, receiving waters, and drinking water intakes across national and regional scales under mean annual and low-flow conditions. We provide an overview of the evolution and utility of the iSTREEM model as a screening-level risk assessment tool relevant for down-the-drain products. The spatial nature of the model, integrating point locations of facilities along a hydrologic network, provides a powerful framework to assess environmental exposure and risk in a spatial context. A case study compared national distributions of modeled concentrations of the fragrance 1,3,4,6,7,8-Hexahydro-4,6,6,7,8,8,-hexamethylcyclopenta-γ-2-benzopyran (HHCB) and the insect repellent N,N-Diethyl-m-toluamide (DEET) to available monitoring data at comparable flow conditions. The iSTREEM low-flow model results yielded a conservative distribution of values, whereas the mean-flow model results more closely resembled the concentration distribution of monitoring data. We demonstrate how model results can be used to construct a conservative estimation of the distribution of chemical concentrations for effluents and streams leading to the derivation of a predicted environmental concentration (PEC) using the high end of the concentration distribution (e.g., 90th percentile). Data requirements, assumptions, and applications of iSTREEM are discussed in the context of other down-the-drain modeling approaches to enhance understanding of comparative advantages and uncertainties for prospective users interested in exposure modeling for ecological risk assessment. Integr Environ Assess Manag 2016;12:782-792. © 2016 SETAC.


Subject(s)
Environmental Exposure/analysis , Models, Chemical , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , DEET , Environmental Exposure/statistics & numerical data , Environmental Monitoring , Prospective Studies , Risk Assessment , Rivers , Waste Disposal, Fluid
2.
J Environ Manage ; 75(3): 219-28, 2005 May.
Article in English | MEDLINE | ID: mdl-15829364

ABSTRACT

Scientists often use mathematical models to assess river water quality. However, the application of the models in environmental management and risk assessment is quite limited because of the difficulty of preparing input data and interpreting model output. This paper presents a study that links ArcIMS, a Web-based Geographic Information System (GIS) software to ROUT, a national and regional scale river model which evolved from the US Environmental Protection Agency's Water Use Improvement and Impairment Model, to create a WWW-GIS-based river simulation model called GIS-ROUT. GIS-ROUT is used to predict chemical concentrations in perennially flowing rivers throughout the continental United States that receive discharges from more than 10,000 publicly owned wastewater treatment plants (WWTPs). The WWTP chemical loadings are calculated from per capita per day disposal of product ingredients and the population served by each plant. Each WWTP, containing data on treatment type and influent and effluent flows, is spatially associated with a specific receiving river segment. Based on user defined treatment-type removal rates for a particular chemical, an effluent concentration for each WWTP is calculated and used as input to the river model. Over 360,000 km of rivers are modeled, incorporating dilution and first order loss of the chemical in each river segment. The integration of spatial data, GIS, the WWW, and modeling in GIS-ROUT makes it possible to organize and analyze data spatially, and view results on interactive maps as well as tables and distribution charts. The integration allows scientists and managers in different locations to coordinate and share their estimations for environmental exposure and risk assessments.


Subject(s)
Geographic Information Systems , Internet , Models, Theoretical , Rivers , Water Pollutants/analysis , Quality Control , Risk Assessment , United States , United States Environmental Protection Agency , Waste Disposal, Fluid , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...