Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Med Chem ; 50(24): 6265-73, 2007 Nov 29.
Article in English | MEDLINE | ID: mdl-17973362

ABSTRACT

A series of novel cyanoguanidine derivatives was designed and synthesized. Condensation of N-(1-benzotriazol-1-yl-2,2-dichloropropyl)-substituted benzamides with N-(substituted-pyridin-3-yl)-N'-cyanoguanidines furnished N-{2,2-dichloro-1-[N'-(substituted-pyridin-3-yl)-N''-cyanoguanidino]propyl}-substituted benzamide derivatives. These agents were glyburide-reversible potassium channel openers and hyperpolarized human bladder cells as assessed by the FLIPR membrane potential dye (KATP-FMP). These compounds were also potent full agonists in relaxing electrically stimulated pig bladder strips, an in vitro model of overactive bladder. The most active compound 9 was evaluated for in vivo efficacy and selectivity in a pig model of bladder instability. Preliminary pharmacokinetic studies in dog demonstrated excellent oral bioavailability and a t1/2 of 15 h. The synthesis, SAR studies, and biological properties of these agents are discussed.


Subject(s)
Benzamides/chemical synthesis , Guanidines/chemical synthesis , KATP Channels/physiology , Urinary Bladder, Overactive/drug therapy , Administration, Oral , Animals , Benzamides/pharmacokinetics , Benzamides/pharmacology , Biological Availability , Crystallography, X-Ray , Dogs , Electric Stimulation , Female , Guanidines/pharmacokinetics , Guanidines/pharmacology , Humans , In Vitro Techniques , Ion Channel Gating , KATP Channels/agonists , Muscle Relaxation , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Potassium Channels, Inwardly Rectifying/agonists , Potassium Channels, Inwardly Rectifying/physiology , Structure-Activity Relationship , Swine , Urinary Bladder/cytology , Urinary Bladder/drug effects , Urinary Bladder/physiology , Urinary Bladder, Overactive/physiopathology , Urodynamics
2.
J Med Chem ; 49(23): 6869-87, 2006 Nov 16.
Article in English | MEDLINE | ID: mdl-17154517

ABSTRACT

Structure-activity relationships were investigated on the tricyclic dihydropyridine (DHP) KATP openers 9-(3-bromo-4-fluorophenyl)-5,9-dihydro-3H,4H-2,6-dioxa-4-azacyclopenta[b]naphthalene-1,8-dione (6) and 10-(3-bromo-4-fluorophenyl)-9,10-dihydro-1H,8H-2,7-dioxa-9-azaanthracene-4,5-dione (65). Substitution off the core of the DHP, absolute stereochemistry, and aromatic substitution were evaluated for KATP channel activity using Ltk- cells stably transfected with the Kir6.2/SUR2B exon 17- splice variant and in an electrically stimulated pig bladder strip assay. A select group of compounds was evaluated for in vitro inhibition of spontaneous bladder contractions. Several compounds were found to have the unique characteristic of partial efficacy in both the cell-based and electrically stimulated bladder strip assays but full efficacy in inhibiting spontaneous bladder strip contractions. For compound 23b, this profile was mirrored in vivo where it was fully efficacious in inhibiting spontaneous myogenic bladder contractions but only partially able to reduce neurogenically mediated reflex bladder contractions.


Subject(s)
Adenosine Triphosphate/physiology , Aza Compounds/chemical synthesis , Dihydropyridines/chemistry , Heterocyclic Compounds, 3-Ring/chemical synthesis , Naphthalenes/chemical synthesis , Potassium Channels, Inwardly Rectifying/drug effects , Animals , Aza Compounds/chemistry , Aza Compounds/pharmacology , Cell Line , Crystallography, X-Ray , Electric Stimulation , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , In Vitro Techniques , Ion Channel Gating , Mice , Muscle Contraction , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Naphthalenes/chemistry , Naphthalenes/pharmacology , Stereoisomerism , Structure-Activity Relationship , Swine , Urinary Bladder/drug effects , Urinary Bladder/physiology
3.
Br J Pharmacol ; 143(1): 81-90, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15302680

ABSTRACT

1. Openers of ATP-sensitive K(+) channels are of interest in several therapeutic indications including overactive bladder and other lower urinary tract disorders. This study reports on the in vitro and in vivo characterization of a structurally novel naphthylamide N-[2-(2,2,2-trifluoro-1-hydroxy-1-trifluoromethyl-ethyl)-naphthalen-1-yl]-acetamide (A-151892), as an opener of the ATP-sensitive potassium channels. 2. A-151892 was found to be a potent and efficacious potassium channel opener (KCO) as assessed by glibenclamide-sensitive whole-cell current and fluorescence-based membrane potential responses (-log EC(50)=7.63) in guinea-pig bladder smooth muscle cells. 3. Evidence for direct interaction with KCO binding sites was derived from displacement of binding of the 1,4-dihydropyridine opener [(125)I]A-312110. A-151892 displaced [(125)I]A-312110 binding to bladder membranes with a -log Ki value of 7.45, but lacked affinity against over 70 neurotransmitter receptor and ion channel binding sites. 4. In pig bladder strips, A-151892 suppressed phasic, carbachol-evoked and electrical field stimulus-evoked contractility in a glibenclamide-reversible manner with -log IC(50) values of 8.07, 7.33 and 7.02 respectively, comparable to that of the potencies of the prototypical cyanoguanidine KCO, P1075. The potencies to suppress contractions in thoracic aorta (-log IC(50)=7.81) and portal vein (-log IC(50)=7.98) were not substantially different from those observed for suppression of phasic contractility of the bladder smooth muscle. 5. In vivo, A-151892 was found to potently suppress unstable bladder contractions in obstructed models of unstable contractions in both pigs and rats with pED(35%) values of 8.05 and 7.43, respectively. 6. These results demonstrate that naphthylamide analogs exemplified by A-151892 are novel K(ATP) channel openers and may serve as chemotypes to exploit additional analogs with potential for the treatment of overactive bladder and lower urinary tract symptoms.


Subject(s)
Acetamides/pharmacology , Adenosine Triphosphate/physiology , Naphthalenes/pharmacology , Potassium Channels/agonists , Animals , Barbiturates/metabolism , Binding, Competitive/drug effects , Blood Pressure/drug effects , Blood Vessels/drug effects , Female , Guanidines/pharmacology , Guinea Pigs , In Vitro Techniques , Iodine Radioisotopes , Isoxazoles/metabolism , Membrane Potentials/drug effects , Muscle Relaxation/drug effects , Muscle, Smooth, Vascular/drug effects , Patch-Clamp Techniques , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Swine , Urinary Bladder/drug effects
4.
J Med Chem ; 47(12): 3163-79, 2004 Jun 03.
Article in English | MEDLINE | ID: mdl-15163196

ABSTRACT

Structure-activity relationships were investigated on a novel series of sulfonyldihydropyridine-containing K(ATP) openers. Ring sizes, absolute stereochemistry, and aromatic substitution were evaluated for K(ATP) activity in guinea pig bladder cells using a fluorescence-based membrane potential assay and in a pig bladder strip assay. The inhibition of spontaneous bladder contractions in vitro was also examined for a select group of compounds. All compounds studied showed greater potency to inhibit spontaneous bladder contractions relative to their potencies to inhibit contractions elicited by electrical stimulation. In an anesthetized pig model of myogenic bladder overactivity, compound 14 and (-)-cromakalim 1 were found to inhibit spontaneous bladder contractions in vivo at plasma concentrations lower than those that affected hemodynamic parameters. Compound 14 showed approximately 5-fold greater selectivity than 1 in vivo and supports the concept that bladder-selective K(ATP) channel openers may have utility in the treatment of overactive bladder.


Subject(s)
Adenosine Triphosphate/physiology , Cyclic S-Oxides/chemical synthesis , Potassium Channels/drug effects , Quinolones/chemical synthesis , Urinary Bladder/drug effects , Animals , Cyclic S-Oxides/chemistry , Cyclic S-Oxides/pharmacology , Electric Stimulation , Guinea Pigs , Hemodynamics/drug effects , In Vitro Techniques , Membrane Potentials , Muscle Contraction/drug effects , Muscle, Smooth/cytology , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Quinolones/chemistry , Quinolones/pharmacology , Stereoisomerism , Structure-Activity Relationship , Swine , Urinary Bladder/cytology , Urinary Bladder/physiology , Urodynamics/drug effects
5.
J Med Chem ; 47(12): 3180-92, 2004 Jun 03.
Article in English | MEDLINE | ID: mdl-15163197

ABSTRACT

Structure-activity relationships were investigated on a novel series of tricyclic dihydropyridine-containing K(ATP) openers. This diverse group of analogues, comprising a variety of heterocyclic rings fused to the dihydropyridine nucleus, was designed to determine the influence on activity of hydrogen-bond-donating and -accepting groups and their stereochemical disposition. Compounds were evaluated for K(ATP) activity in guinea pig bladder cells using a fluorescence-based membrane potential assay and in a pig bladder strip assay. The inhibition of spontaneous bladder contractions in vitro was also examined for a subset of compounds. All compounds studied showed greater potency to inhibit spontaneous bladder contractions relative to their potencies to inhibit contractions elicited by electrical stimulation.


Subject(s)
Adenosine Triphosphate/physiology , Dihydropyridines/chemical synthesis , Heterocyclic Compounds, 3-Ring/chemical synthesis , Potassium Channels/drug effects , Urinary Bladder/drug effects , Animals , Dihydropyridines/chemistry , Dihydropyridines/pharmacology , Electric Stimulation , Guinea Pigs , Hemodynamics/drug effects , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Hydrogen Bonding , In Vitro Techniques , Membrane Potentials , Muscle Contraction/drug effects , Muscle, Smooth/cytology , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Stereoisomerism , Structure-Activity Relationship , Swine , Urinary Bladder/cytology , Urinary Bladder/physiology , Urodynamics/drug effects
6.
Bioorg Med Chem ; 12(8): 1895-904, 2004 Apr 15.
Article in English | MEDLINE | ID: mdl-15051058

ABSTRACT

In search of a novel chemotype of K(ATP) channel openers a series of tricyclic dihydropyridopyrazolones and dihydropyridoisoxazolones was synthesized. It was found that cyclopentanone in the left hand portion of the molecule was 4-fold more potent than cyclohexanone. Introduction of gem-dimethyl groups as well as incorporation of oxygen in the cyclohexanone ring in the left hand portion of the molecule increased the potency 10-fold. In the right hand portion of the molecule, the NH-group of the pyrazolone can be effectively substituted by oxygen increasing the activity 5-fold. Incorporation of a methyl group adjacent to the dihydropyridine (DHP) nitrogen not only significantly boosted activity, but also provided an additional benefit of increased metabolic stability. In vitro tests on the tissue from pig bladder strips provided further confirmation of K(ATP) activity of these compounds.


Subject(s)
Membrane Proteins/physiology , Oxazolone/chemistry , Potassium Channels/physiology , Pyrazoles/chemistry , Pyrazolones , Pyridines/chemistry , Animals , Cells, Cultured , Guinea Pigs , Humans , In Vitro Techniques , Membrane Proteins/agonists , Oxazolone/pharmacology , Potassium Channels/agonists , Pyrazoles/pharmacology , Pyridines/pharmacology , Structure-Activity Relationship , Swine
7.
Eur J Pharmacol ; 483(2-3): 195-205, 2004 Jan 12.
Article in English | MEDLINE | ID: mdl-14729107

ABSTRACT

The molecular properties of the sulfonylurea receptor 2 (SUR2) subunits of K(ATP) channels expressed in urinary bladder were assessed by polymerase chain reaction (PCR). This showed that SUR2B exon 17- mRNA (72%) was predominant over the SUR2B exon 17+ splice variant (28%). The pharmacological properties of both of these isoforms stably expressed in mouse Ltk(-)cells (L-cells) with K(IR) 6.2 were determined by measuring changes in membrane potential responses evoked by K(+) channel openers using bis-(1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC(4)(3)) fluorescence. The rank order potency of a variety of structurally distinct K(+) channel openers was found to be the same in both stable cell lines and compared well with guinea pig bladder cells. The potency of these compounds in the SUR2B exon 17- cells more closely resembled the potency measured in guinea pig bladder unlike the cell line containing the SUR2B exon 17+ subtype. Analysis of the displacement of [125I]A-312110 binding with the same K(+) channel openers to the SUR2B exon 17- cells showed excellent correlation to those measured in guinea pig bladder. This study supports the notion that K(ATP) channels containing SUR2B exon 17- represent a major splice variant expressed in urinary bladder smooth muscle.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Membrane Proteins/chemistry , Potassium Channels, Inwardly Rectifying/chemistry , Potassium Channels/genetics , Receptors, Drug/genetics , Urinary Bladder/metabolism , Adenosine Triphosphate/genetics , Adenosine Triphosphate/physiology , Amides/metabolism , Amides/pharmacology , Animals , Benzophenones/metabolism , Benzophenones/pharmacology , DNA, Recombinant/biosynthesis , DNA, Recombinant/genetics , Dose-Response Relationship, Drug , Exons/drug effects , Exons/physiology , Guinea Pigs , Humans , L Cells , Membrane Potentials/drug effects , Membrane Potentials/physiology , Membrane Proteins/genetics , Mice , Potassium Channels, Inwardly Rectifying/genetics , Protein Binding/drug effects , Protein Binding/physiology , Sulfonylurea Receptors , Urinary Bladder/drug effects
8.
Bioorg Med Chem Lett ; 14(2): 397-400, 2004 Jan 19.
Article in English | MEDLINE | ID: mdl-14698167

ABSTRACT

Thiourea derivatives were identified as glyburide-reversible potassium channel openers through high-throughput screening. Based on these findings, a number of novel cyanoguanidines were designed and synthesized, which hyperpolarized human bladder K(ATP) channels. These agents are potent full agonists in relaxing electrically-stimulated pig bladder strips. The synthesis, SAR and biological properties of these agents are discussed.


Subject(s)
Adenosine Triphosphate/pharmacology , Guanidines/chemical synthesis , Potassium Channels/metabolism , Urinary Bladder Diseases/drug therapy , Animals , Drug Design , Guanidines/pharmacology , Guanidines/therapeutic use , Humans , In Vitro Techniques , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Swine , Urinary Bladder/drug effects , Urinary Bladder/metabolism , Urinary Bladder/physiology , Urinary Bladder Diseases/metabolism
9.
Mol Pharmacol ; 64(1): 143-53, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12815170

ABSTRACT

Although ATP-sensitive K+ channels continue to be explored for their therapeutic potential, developments in high-affinity radioligands to investigate native and recombinant KATP channels have been less forthcoming. This study reports the identification and pharmacological characterization of a novel iodinated 1,4-dihydropyridine KATP channel opener, [125I]A-312110 [(9R)-9-(4-fluoro-3-125iodophenyl)-2,3,5,9-tetrahydro-4H-pyrano[3,4-b]thieno[2,3-e]pyridin-8(7H)-one-1,1-dioxide]. Binding of [125I]A-312110 to guinea pig cardiac (KD = 5.8 nM) and urinary bladder (KD = 4.9 nM) membranes were of high affinity, saturable, and to a single set of binding sites. Displacement of [125I]A-312110 by structurally diverse potassium channel openers (KCOs) indicated a similar rank order of potency in both guinea pig cardiac and bladder membranes (Ki, heart): A-312110 (4.3 nM) > N-cyano-N'-(1,1-dimethylpropyl)-N"-3-pyridylguanidine (P1075) > (-)-N-(2-ethoxyphenyl)-N'-(1,2,3-trimethylpropyl)-2-nitroethene-1,1-diamine (Bay X 9228) > pinacidil > (-)-cromakalim > N-(4-benzoyl phenyl)-3,3,3-trifluro-2-hydroxy-2-methylpropionamine (ZD6169) > 9-(3-cyanophenyl)-3,4,6,7,9,10-hexahydro-1,8-(2H,5H)-acridinedione (ZM244085) >> diazoxide (16.7 microM). Displacement by KATP channel blockers, the sulfonylurea glyburide, and the cyanoguanidine N-[1-(3-chlorophenyl)cyclobutyl]-N'-cyano-N"-3-pyridinyl-guanidine (PNU-99963) were biphasic in the heart but monophasic in bladder with about a 100- to 500-fold difference in Ki values between high- and low-affinity sites. Good correlations were observed between cardiac or bladder-binding affinities of KCOs with functional activation as assessed by their respective potencies to either suppress action potential duration (APD) in Purkinje fibers or to relax electrical field-stimulated bladder contractions. Collectively, these results demonstrate that [125I]A-312110 binds with high affinity and has an improved activity profile compared with other radiolabeled KCOs. [125I]A-312110 is a useful tool for investigation of the molecular and functional properties of the KATP channel complex and for the identification, in a high throughput manner, of both novel channel blockers and openers that interact with cardiac/smooth muscle-type KATP channels.


Subject(s)
Heart/drug effects , Membrane Proteins/metabolism , Pyridines/pharmacology , Radiopharmaceuticals/pharmacology , Thiophenes/pharmacology , Adenosine Triphosphate/metabolism , Animals , Binding Sites , Dihydropyridines/chemistry , Guinea Pigs , Iodine Radioisotopes , Kinetics , Male , Membrane Proteins/drug effects , Myocardium/metabolism , Potassium Channels , Radioligand Assay , Urinary Bladder/drug effects , Urinary Bladder/metabolism
10.
Br J Pharmacol ; 138(2): 393-9, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12540531

ABSTRACT

1. This study reports on the identification and characterization of a 1,4-dihydropyridine analogue, 9-(3,4-dichlorophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydro-1,8(2H,5H)-acridinedione (A-184209) as a novel inhibitor of ATP-sensitive K(+) channels. 2. A-184209 inhibited membrane potential changes evoked by the prototypical cyanoguanidine ATP-sensitive K(+) channel opener (KCO) P1075 in both vascular (A10) and urinary bladder smooth muscle cells with IC(50) values of 1.44 and 2.24 micro M respectively. 3. P1075-evoked relaxation of 25 mM K(+) stimulated aortic strips was inhibited by A-184209 in an apparently competitive fashion with a pA(2) value of 6.34. 4. The potencies of A-184209 to inhibit P1075-evoked decreases in membrane potential responses in cardiac myocytes (IC(50)=0.53 micro M) and to inhibit 2-deoxyglucose-evoked cation efflux pancreatic RINm5F cells (IC(50)=0.52 micro M) were comparable to the values for inhibition of smooth muscle K(ATP) channels. 5. On the other hand, a structural analogue of A-184209 that lacked the gem-dimethyl substituent, 9-(3,4-dichlorophenyl)-3,4,6,7,9,10-hexahydro-1,8(2H,5H)-acridinedione (A-184208), was found to be a K(ATP) channel opener, evoking membrane potential responses in A10 smooth muscle cells (EC(50)=385 nM) and relaxing aortic smooth muscle strips (IC(50)=101 nM) in a glyburide-sensitive manner. 6. Radioligand binding studies demonstrated that A-184209 displaced SUR1 binding defined by [(3)H]glyburide binding to RINm5F cell membranes with a K(i) value of 0.11 micro M whereas A-184208 was ineffective. On the other hand, both A-184209 (K(i)=1.34 micro M) and A-184208 (K(i)=1.14 micro M) displaced binding of the KCO radioligand, [(125)I]A-312110 in guinea-pig bladder membranes with similar affinities. 7. These studies demonstrate that A-184209 is a novel and structurally distinct compound that inhibits K(ATP) channels in smooth muscle with potencies comparable to glyburide. The structural overlap between DHP openers and blockers, together with their differential interaction with ligand binding sites, support the notion that both openers and blockers bind to similar or very closely coupled sites on the sulfonylurea receptor and that subtle changes in the pharmacophore itself could switch functional properties from K(ATP) channel activation to inhibition.


Subject(s)
Acridines/chemistry , Acridines/pharmacology , Dihydropyridines/chemistry , Potassium Channel Blockers/chemistry , Potassium Channel Blockers/pharmacology , Potassium Channels/physiology , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/physiology , Cell Line , Dose-Response Relationship, Drug , Guinea Pigs , In Vitro Techniques , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiology , Rats , Rats, Sprague-Dawley
11.
J Pharmacol Exp Ther ; 303(1): 379-86, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12235274

ABSTRACT

Alterations in the myogenic activity of the bladder smooth muscle are thought to serve as a basis for the involuntary detrusor contractions associated with the overactive bladder. Activation of ATP-sensitive K(+) (K(ATP)) channels has been recognized as a potentially viable mechanism to modulate membrane excitability in bladder smooth muscle. In this study, we describe the preclinical pharmacology of (-)-(9S)-9-(3-bromo-4-fluorophenyl)-2,3,5,6,7,9-hexahydrothieno[3,2-b]quinolin-8(4H)-one 1,1-dioxide (A-278637), a novel 1,4-dihydropyridine K(ATP) channel opener (KCO) that demonstrates enhanced bladder selectivity for the suppression of unstable bladder contractions in vivo relative to other reference KCOs. A-278637 activated K(ATP) channels in bladder smooth muscle cells in a glyburide (glibenclamide)-sensitive manner as assessed by fluorescence membrane potential assays using bis-(1,3-dibutylbarbituric acid)trimethine oxonol (EC(50) = 102 nM) and by whole cell patch clamp. Spontaneous (myogenic) phasic activity of pig bladder strips was suppressed (IC(50) = 23 nM) in a glyburide-sensitive manner by A-278637. A-278637 also inhibited carbachol- and electrical field-stimulated contractions of bladder strips, although the respective potencies were 8- and 13-fold lower compared with inhibition of spontaneous phasic activity. As shown in the accompanying article [Brune ME, Fey TA, Brioni JD, Sullivan JP, Williams M, Carroll WA, Coghlan MJ, and Gopalakrishnan M (2002) J Pharmacol Exp Ther 303:387-394], A-278637 suppressed myogenic contractions in vivo in a model of bladder instability with superior selectivity compared with other KCOs, WAY-133537 [(R)-4-[3,4-dioxo-2-(1,2,2-trimethyl-propylamino)cyclobut-1-enylamino]-3-ethyl-benzonitrile] and ZD6169 [(S)-N-(4-benzoylphenyl)3,3,3-trifluro-2hydroxy-2-methyl-priopionamide]. A-278637 did not interact with other ion channels, including L-type calcium channels or other neurotransmitter receptor systems. The pharmacological profile of A-278637 represents an attractive basis for further investigations of selective K(ATP) channel openers for the treatment of overactive bladder via myogenic etiology.


Subject(s)
Aorta, Thoracic/physiology , Cyclic S-Oxides/pharmacology , Ion Channel Gating/physiology , Muscle Contraction/drug effects , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth/physiology , Potassium Channels/physiology , Quinolones/pharmacology , Urinary Bladder/physiology , ATP-Binding Cassette Transporters , Amides/pharmacology , Animals , Aorta, Thoracic/drug effects , Benzophenones/pharmacology , Cyclobutanes/pharmacology , Guinea Pigs , Humans , In Vitro Techniques , Ion Channel Gating/drug effects , KATP Channels , Kinetics , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Muscle Relaxation/drug effects , Muscle Relaxation/physiology , Muscle, Smooth/drug effects , Muscle, Smooth, Vascular/physiology , Nitriles/pharmacology , Patch-Clamp Techniques , Portal Vein/drug effects , Portal Vein/physiology , Potassium Channel Blockers , Potassium Channels/drug effects , Potassium Channels, Inwardly Rectifying , Rats , Rats, Sprague-Dawley , Urinary Bladder/drug effects
13.
J Pharmacol Exp Ther ; 300(3): 910-7, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11861797

ABSTRACT

Although multiple adenosine receptors have been identified, the subtype and underlying mechanisms involved in the relaxation response to adenosine in the urinary bladder remain unclear. The present study investigates changes in the membrane potential, as assessed by fluorescence-based techniques, of bladder smooth muscle cells by adenosine receptor agonists acting via ATP-sensitive potassium (K(ATP)) channels. Membrane hyperpolarization evoked by adenosine and various adenosine receptor subtype-selective agonists was attenuated or reversed by the K(ATP) channel blocker glyburide. Comparison of adenosine receptor agonist potencies eliciting membrane potential effects showed a rank order of potency 5'-N-ethyl-carboxamido adenosine (NECA; -log EC50 = 7.97) approximately 2-p-(2-carboxethyl)phenethyl-amino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680; 7.65) > 2-chloro adenosine (5.90) approximately 2-chloro-N6-cyclopentyladenosine (CCPA; 5.51) approximately N6-cyclopentyladenosine approximately N6-(R)-phenylisopropyladenosine > 2-chloro- N6-(3-iodobenzyl)-adenosine-5'-N-methyl-carboxamide (2Cl-IBMECA; 4.78). Membrane potential responses were mimicked by forskolin, a known activator of adenylate cyclase, and papaverine, a phosphodiesterase inhibitor. The A(2A)-selective antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl-amino] ethyl)phenol (ZM-241385), and the adenylate cyclase inhibitor N-(cis-2-phenyl-cyclopentyl) azacyclotridecan-2-imine-hydrochloride (MDL-12330A) inhibited the observed change in membrane potential evoked by adenosine and adenosine-receptor agonists. The rank order potency for relaxation of K+-stimulated guinea pig bladder strips, NECA (-log EC50 = 6.41) approximately CGS-21680 (6.38) > 2-chloro adenosine (5.90) >> CCPA approximately 2Cl-IBMECA (>4.0) was comparable to that obtained from membrane potential measurements. Collectively, these studies demonstrate that adenosine-evoked membrane hyperpolarization and relaxation of bladder smooth muscle is mediated by A(2A) receptor-mediated activation of K(ATP) channels via adenylate cyclase and elevation of cAMP.


Subject(s)
Muscle, Smooth/metabolism , Potassium Channels/metabolism , Receptors, Purinergic P1/metabolism , Urinary Bladder/metabolism , ATP-Binding Cassette Transporters , Adenosine/pharmacology , Adenosine Deaminase/pharmacology , Adenylyl Cyclases/metabolism , Animals , Glyburide/pharmacology , Guinea Pigs , In Vitro Techniques , KATP Channels , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Muscle Relaxation/drug effects , Muscle Relaxation/physiology , Muscle, Smooth/drug effects , Potassium Channels/drug effects , Potassium Channels, Inwardly Rectifying , Purinergic P1 Receptor Agonists , Purinergic P1 Receptor Antagonists , Receptor, Adenosine A2A , Receptors, Purinergic P1/drug effects , Urinary Bladder/drug effects , Vasodilator Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...