Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 144(41): 19186-19195, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36194198

ABSTRACT

Five- and six-coordinate cationic bis(phosphine) cobalt(III) metallacycle complexes were synthesized with the general structures, [(depe)Co(cycloneophyl)(L)(L')][BArF4] (depe = 1,2-bis(diethylphosphino)ethane; cycloneophyl = [κ-C:C-(CH2C(Me)2)C6H4]; L/L' = pyridine, pivalonitrile, or the vacant site, BAr4F = B[(3,5-(CF3)2)C6H3]4). Each of these compounds promoted facile directed C(sp2)-H activation with exclusive selectivity for ortho-alkylated products, consistent with the selectivity of reported cobalt-catalyzed arene-alkene-alkyne coupling reactions. The direct observation of C-H activation by cobalt(III) metallacycles provided experimental support for the intermediacy of these compounds in this class of catalytic C-H functionalization reaction. Deuterium labeling and kinetic studies provided insight into the nature of C-H bond cleavage and C-C bond reductive elimination from isolable cobalt(III) precursors.


Subject(s)
Cobalt , Pyridines , Cobalt/chemistry , Kinetics , Deuterium , Pyridines/chemistry , Alkynes/chemistry , Alkenes , Ethane
2.
J Am Chem Soc ; 144(10): 4530-4540, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35245039

ABSTRACT

A cobalt-catalyzed intermolecular three-component coupling of arenes, ethylene, and alkynes was developed using the well-defined air-stable cationic bis(phosphine) cobalt(I) complex, [(dcype)Co(η6-C7H8)][BArF4] (dcype = 1,2-bis(dicyclohexylphosphino)ethane; BArF4 = B[(3,5-(CF3)2)C6H3]4), as the precatalyst. All three components were required for turnover and formation of ortho-homoallylated arene products. A range of directing groups including amide, ketone, and 2-pyridyl substituents on the arene promoted the reaction. The cobalt-catalyzed method exhibited broad functional group tolerance allowing for the late-stage functionalization of two drug molecules, fenofibrate and haloperidol. A series of control reactions, deuterium labeling studies, resting state analysis, as well as synthesis of substrate- and product-bound η6-arene complexes supported a pathway involving C(sp2)-H activation from a cobalt(III) metallacycle.


Subject(s)
Alkynes , Cobalt , Catalysis , Cations , Ethylenes , Molecular Structure , Phosphines
3.
J Am Chem Soc ; 142(33): 14169-14177, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32697079

ABSTRACT

Alkyl-Pd(IV) complexes are frequently invoked in the proposed mechanisms of Pd-catalyzed C(sp3)-H functionalization reactions, though few examples of Pd(IV) complexes containing cyclopalladated substrates have been isolated due to the instability of the high-valent Pd(IV) center. Herein, we report the synthesis of stable and isolable OCO pincer-supported alkyl-Pd(IV) complexes containing cyclopalladated alkylamine and oxime frameworks, which represent the first examples of alkyl-Pd(IV) complexes derived from the oxidation of cyclopalladated monodentate N-donor substrates. The aminoalkyl-Pd(IV) complexes reacted efficiently with O- and N-nucleophiles to afford γ-functionalized alkylamine products. A mechanistic study of the nucleophile-mediated reductive elimination was conducted using an oxime-derived Pd(IV) complex, which revealed the intermediacy of a previously unexplored anionic Pd(IV) species.

4.
Nature ; 581(7809): 415-420, 2020 05.
Article in English | MEDLINE | ID: mdl-32268340

ABSTRACT

The ubiquity of tertiary alkylamines in pharmaceutical and agrochemical agents, natural products and small-molecule biological probes1,2 has stimulated efforts towards their streamlined synthesis3-9. Arguably the most robust method for the synthesis of tertiary alkylamines is carbonyl reductive amination3, which comprises two elementary steps: the condensation of a secondary alkylamine with an aliphatic aldehyde to form an all-alkyl-iminium ion, which is subsequently reduced by a hydride reagent. Direct strategies have been sought for a 'higher order' variant of this reaction via the coupling of an alkyl fragment with an alkyl-iminium ion that is generated in situ10-14. However, despite extensive efforts, the successful realization of a 'carbonyl alkylative amination' has not yet been achieved. Here we present a practical and general synthesis of tertiary alkylamines through the addition of alkyl radicals to all-alkyl-iminium ions. The process is facilitated by visible light and a silane reducing agent, which trigger a distinct radical initiation step to establish a chain process. This operationally straightforward, metal-free and modular transformation forms tertiary amines, without structural constraint, via the coupling of aldehydes and secondary amines with alkyl halides. The structural and functional diversity of these readily available precursors provides a versatile and flexible strategy for the streamlined synthesis of complex tertiary amines.


Subject(s)
Amines/chemistry , Amines/chemical synthesis , Chemistry Techniques, Synthetic/methods , Aldehydes/chemistry , Alkylation , Amination , Loratadine/analogs & derivatives , Loratadine/chemical synthesis , Loratadine/chemistry
5.
Angew Chem Int Ed Engl ; 58(27): 9054-9059, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31042003

ABSTRACT

Reported is the discovery of an approach to functionalize secondary alkylamines using 2-halobenzoic acids as aryl-transfer reagents. These reagents promote an unusually mild carboxylate-assisted oxidative addition to alkylamine-derived palladacycles. In the presence of AgI salts, a decarboxylative C(sp3 )-C(sp2 ) bond reductive elimination leads to γ-aryl secondary alkylamines and renders the carboxylate motif a traceless directing group. Stoichiometric mechanistic studies were effectively translated to a Pd-catalyzed γ-C(sp3 )-H arylation process for secondary alkylamines.

6.
Angew Chem Int Ed Engl ; 57(12): 3178-3182, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29380496

ABSTRACT

A palladium(II)-catalyzed γ-C-H amination of cyclic alkyl amines to deliver highly substituted azetidines is reported. The use of a benziodoxole tosylate oxidant in combination with AgOAc was found to be crucial for controlling a selective reductive elimination pathway to the azetidines. The process is tolerant of a range of functional groups, including structural features derived from chiral α-amino alcohols, and leads to the diastereoselective formation of enantiopure azetidines.

SELECTION OF CITATIONS
SEARCH DETAIL
...