Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 25004, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27112447

ABSTRACT

The number of reports of paternal epigenetic influences on the phenotype of offspring in rodents is increasing but the molecular events involved remain unclear. Here, we show that haploinsufficiency for the histone 3 lysine 9 methyltransferase Setdb1 in the sire can influence the coat colour phenotype of wild type offspring. This effect occurs when the allele that directly drives coat colour is inherited from the dam, inferring that the effect involves an "in trans" step. The implication of this finding is that epigenetic state of the sperm can alter the expression of genes inherited on the maternally derived chromosomes. Whole genome bisulphite sequencing revealed that Setdb1 mutant mice show DNA hypomethylation at specific classes of transposable elements in the sperm. Our results identify Setdb1 as a paternal effect gene in the mouse and suggest that epigenetic inheritance may be more likely in individuals with altered levels of epigenetic modifiers.


Subject(s)
DNA Methylation , Endogenous Retroviruses/genetics , Haploinsufficiency , Histone-Lysine N-Methyltransferase/genetics , Paternal Inheritance , Animals , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Male , Mice , Phenotype , Quantitative Trait Loci , Retroelements , Spermatozoa/chemistry , Whole Genome Sequencing
2.
Dev Cell ; 19(5): 649-50, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-21074715

ABSTRACT

In this special issue of Developmental Cell, we discuss the role of chromatin in phenotypic variation as a counterpoint to the reviews on chromatin dynamics in development and cancer. We highlight some recent work on the role of chromatin in transcriptional noise in yeast and Caenorhabditis elegans and consider the implications in understanding intangible variation or developmental noise in mammals.


Subject(s)
Chromatin/metabolism , Epigenesis, Genetic , Genetic Variation , Animals , Caenorhabditis elegans/genetics , Transcription, Genetic , Yeasts/genetics
3.
Genome Biol ; 11(11): R111, 2010.
Article in English | MEDLINE | ID: mdl-21092094

ABSTRACT

BACKGROUND: Inbred individuals reared in controlled environments display considerable variance in many complex traits but the underlying cause of this intangible variation has been an enigma. Here we show that two modifiers of epigenetic gene silencing play a critical role in the process. RESULTS: Inbred mice heterozygous for a null mutation in DNA methyltransferase 3a (Dnmt3a) or tripartite motif protein 28 (Trim28) show greater coefficients of variance in body weight than their wild-type littermates. Trim28 mutants additionally develop metabolic syndrome and abnormal behavior with incomplete penetrance. Genome-wide gene expression analyses identified 284 significantly dysregulated genes in Trim28 heterozygote mutants compared to wild-type mice, with Mas1, which encodes a G-protein coupled receptor implicated in lipid metabolism, showing the greatest average change in expression (7.8-fold higher in mutants). This gene also showed highly variable expression between mutant individuals. CONCLUSIONS: These studies provide a molecular explanation of developmental noise in whole organisms and suggest that faithful epigenetic control of transcription is central to suppressing deleterious levels of phenotypic variation. These findings have broad implications for understanding the mechanisms underlying sporadic and complex disease in humans.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , Epigenomics , Gene Silencing , Nuclear Proteins/genetics , Phenotype , Repressor Proteins/genetics , Alleles , Animals , DNA Methyltransferase 3A , Epigenesis, Genetic , Female , Genetic Variation , Genotype , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Proto-Oncogene Mas , Transcription, Genetic , Tripartite Motif-Containing Protein 28
4.
Genome Biol ; 9(12): R182, 2008.
Article in English | MEDLINE | ID: mdl-19099580

ABSTRACT

BACKGROUND: Some years ago we established an N-ethyl-N-nitrosourea screen for modifiers of transgene variegation in the mouse and a preliminary description of the first six mutant lines, named MommeD1-D6, has been published. We have reported the underlying genes in three cases: MommeD1 is a mutation in SMC hinge domain containing 1 (Smchd1), a novel modifier of epigenetic gene silencing; MommeD2 is a mutation in DNA methyltransferase 1 (Dnmt1); and MommeD4 is a mutation in Smarca 5 (Snf2h), a known chromatin remodeler. The identification of Dnmt1 and Smarca5 attest to the effectiveness of the screen design. RESULTS: We have now extended the screen and have identified four new modifiers, MommeD7-D10. Here we show that all ten MommeDs link to unique sites in the genome, that homozygosity for the mutations is associated with severe developmental abnormalities and that heterozygosity results in phenotypic abnormalities and reduced reproductive fitness in some cases. In addition, we have now identified the underlying genes for MommeD5 and MommeD10. MommeD5 is a mutation in Hdac1, which encodes histone deacetylase 1, and MommeD10 is a mutation in Baz1b (also known as Williams syndrome transcription factor), which encodes a transcription factor containing a PHD-type zinc finger and a bromodomain. We show that reduction in the level of Baz1b in the mouse results in craniofacial features reminiscent of Williams syndrome. CONCLUSIONS: These results demonstrate the importance of dosage-dependent epigenetic reprogramming in the development of the embryo and the power of the screen to provide mouse models to study this process.


Subject(s)
Embryonic Development , Epigenesis, Genetic , Animals , Female , Genes, Lethal , Genome , Heterozygote , Histone Deacetylase 1 , Histone Deacetylases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Transgenic , Transcription Factors/metabolism , Williams Syndrome/physiopathology
5.
Curr Opin Genet Dev ; 18(3): 273-9, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18662779

ABSTRACT

Over the past century, patterns of phenotypic inheritance have been observed that are not easily rationalised by Mendel's rules of inheritance. Now that we have begun to understand more about non-DNA based, or 'epigenetic', control of phenotype at the molecular level, the idea that the transgenerational inheritance of these epigenetic states could explain non-Mendelian patterns of inheritance has become attractive. There is a growing body of evidence that abnormal epigenetic states, termed epimutations, are associated with disease in humans. For example, in several cases of colorectal cancer, epimutations have been identified that silence the human mismatch repair genes, MLH1 and MSH2. But strong evidence that the abnormal epigenetic states are primary events that occur in the absence of genetic change and are inherited across generations is still absent.


Subject(s)
Disease/genetics , Epigenesis, Genetic/physiology , Health , Inheritance Patterns/physiology , Animals , Environment , Family Characteristics , Humans , Models, Biological , Mutation/physiology
6.
Hum Mol Genet ; 15 Spec No 2: R131-7, 2006 Oct 15.
Article in English | MEDLINE | ID: mdl-16987876

ABSTRACT

Despite our detailed characterization of the human genome at the level of the primary DNA sequence, we are still far from understanding the molecular events underlying phenotypic variation. Epigenetic modifications to the DNA sequence and associated chromatin are known to regulate gene expression and, as such, are a significant contributor to phenotype. Studies of inbred mice and monozygotic twins show that variation in the epigenotype can be seen even between genetically identical individuals and that this, in some cases at least, is associated with phenotypic differences. Moreover, recent evidence suggests that the epigenome can be influenced by the environment and these changes can last a lifetime. However, we also know that epigenetic states in real-time are in continual flux and, as a result, the epigenome exhibits instability both within and across generations. We still do not understand the rules governing the establishment and maintenance of the epigenotype at any particular locus. The underlying DNA sequence itself and the sequence at unlinked loci (modifier loci) are certainly involved. Recent support for the existence of transgenerational epigenetic inheritance in mammals suggests that the epigenetic state of the locus in the previous generation may also play a role. Over the next decade, many of these processes will be better understood, heralding a greater capacity for us to correlate measurable molecular marks with phenotype and providing the opportunity for improved diagnosis and presymptomatic healthcare.


Subject(s)
Epigenesis, Genetic , Animals , Chromatin/genetics , DNA Methylation , DNA Replication/genetics , Environment , Genotype , Humans , Mice , Models, Genetic , Phenotype , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...