Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 7(22)2021 05.
Article in English | MEDLINE | ID: mdl-34039609

ABSTRACT

Intracellular iron levels are strictly regulated to support homeostasis and avoid iron-mediated ROS production. Loss of iron-sulfur cluster (ISC) synthesis can increase iron loading and promote cell death by ferroptosis. Iron-responsive element-binding proteins IRP1 and IRP2 posttranscriptionally regulate iron homeostasis. IRP1 binding to target mRNAs is competitively regulated by ISC occupancy. However, IRP2 is principally thought to be regulated at the protein level via E3 ubiquitin ligase FBXL5-mediated degradation. Here, we show that ISC synthesis suppression can activate IRP2 and promote ferroptosis sensitivity via a previously unidentified mechanism. At tissue-level O2 concentrations, ISC deficiency enhances IRP2 binding to target mRNAs independent of IRP1, FBXL5, and changes in IRP2 protein level. Deletion of both IRP1 and IRP2 abolishes the iron-starvation response, preventing its activation by ISC synthesis inhibition. These findings will inform strategies to manipulate ferroptosis sensitivity and help illuminate the mechanism underlying ISC biosynthesis disorders, such as Friedreich's ataxia.

2.
Mol Cell ; 80(4): 682-698.e7, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33152268

ABSTRACT

Knowledge of fundamental differences between breast cancer subtypes has driven therapeutic advances; however, basal-like breast cancer (BLBC) remains clinically intractable. Because BLBC exhibits alterations in DNA repair enzymes and cell-cycle checkpoints, elucidation of factors enabling the genomic instability present in this subtype has the potential to reveal novel anti-cancer strategies. Here, we demonstrate that BLBC is especially sensitive to suppression of iron-sulfur cluster (ISC) biosynthesis and identify DNA polymerase epsilon (POLE) as an ISC-containing protein that underlies this phenotype. In BLBC cells, POLE suppression leads to replication fork stalling, DNA damage, and a senescence-like state or cell death. In contrast, luminal breast cancer and non-transformed mammary cells maintain viability upon POLE suppression but become dependent upon an ATR/CHK1/CDC25A/CDK2 DNA damage response axis. We find that CDK1/2 targets exhibit hyperphosphorylation selectively in BLBC tumors, indicating that CDK2 hyperactivity is a genome integrity vulnerability exploitable by targeting POLE.


Subject(s)
Breast Neoplasms/pathology , Carcinoma, Basal Cell/pathology , Cyclin-Dependent Kinase 2/metabolism , DNA Polymerase II/metabolism , Genomic Instability , Poly-ADP-Ribose Binding Proteins/metabolism , Animals , Apoptosis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/metabolism , Cell Cycle , Cell Proliferation , Cyclin-Dependent Kinase 2/genetics , DNA Damage , DNA Polymerase II/genetics , Female , Humans , Mice , Mice, Inbred NOD , Phosphorylation , Poly-ADP-Ribose Binding Proteins/genetics , Signal Transduction , Tumor Cells, Cultured
3.
Sci Signal ; 12(590)2019 07 16.
Article in English | MEDLINE | ID: mdl-31311847

ABSTRACT

Stabilization of the MYC oncoprotein by KRAS signaling critically promotes the growth of pancreatic ductal adenocarcinoma (PDAC). Thus, understanding how MYC protein stability is regulated may lead to effective therapies. Here, we used a previously developed, flow cytometry-based assay that screened a library of >800 protein kinase inhibitors and identified compounds that promoted either the stability or degradation of MYC in a KRAS-mutant PDAC cell line. We validated compounds that stabilized or destabilized MYC and then focused on one compound, UNC10112785, that induced the substantial loss of MYC protein in both two-dimensional (2D) and 3D cell cultures. We determined that this compound is a potent CDK9 inhibitor with a previously uncharacterized scaffold, caused MYC loss through both transcriptional and posttranslational mechanisms, and suppresses PDAC anchorage-dependent and anchorage-independent growth. We discovered that CDK9 enhanced MYC protein stability through a previously unknown, KRAS-independent mechanism involving direct phosphorylation of MYC at Ser62 Our study thus not only identifies a potential therapeutic target for patients with KRAS-mutant PDAC but also presents the application of a screening strategy that can be more broadly adapted to identify regulators of protein stability.


Subject(s)
Cyclin-Dependent Kinase 9/antagonists & inhibitors , Drug Screening Assays, Antitumor/methods , Pancreatic Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cyclin-Dependent Kinase 9/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Molecular Structure , Mutation , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemistry , Protein Stability , Proteolysis , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...