Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(11): e0256842, 2022.
Article in English | MEDLINE | ID: mdl-36327262

ABSTRACT

Despite evidence of their importance to marine ecosystems, at least 32% of all chondrichthyan species are estimated or assessed as threatened with extinction. In addition to the logistical difficulties of effectively conserving wide-ranging marine species, shark conservation is believed to have been hindered in the past by public perceptions of sharks as dangerous to humans. Shark Week is a high-profile, international programming event that has potentially enormous influence on public perceptions of sharks, shark research, shark researchers, and shark conservation. However, Shark Week has received regular criticism for poor factual accuracy, fearmongering, bias, and inaccurate representations of science and scientists. This research analyzes the content and titles of Shark Week episodes across its entire 32 years of programming to determine if there are trends in species covered, research techniques featured, expert identity, conservation messaging, type of programming, and portrayal of sharks. We analyzed titles from 272 episodes (100%) of Shark Week programming and the content of all available (201; 73.9%) episodes. Our data demonstrate that the majority of episodes are not focused on shark bites, although such shows are common and many Shark Week programs frame sharks around fear, risk, and adrenaline. While criticisms of disproportionate attention to particular charismatic species (e.g. great whites, bull sharks, and tiger sharks) are accurate and supported by data, 79 shark species have been featured briefly at least once. Shark Week's depictions of research and of experts are biased towards a small set of (typically visual and expensive) research methodologies and (mostly white, mostly male) experts, including presentation of many white male non-scientists as scientific experts. While sharks are more often portrayed negatively than positively, limited conservation messaging does appear in 53% of episodes analyzed. Results suggest that as a whole, while Shark Week is likely contributing to the collective public perception of sharks as bad, even relatively small alterations to programming decisions could substantially improve the presentation of sharks and shark science and conservation issues.


Subject(s)
Bites and Stings , Sharks , Humans , Animals , Male , Female , Ecosystem , Seafood , Research Personnel , Conservation of Natural Resources
2.
Integr Org Biol ; 4(1): obac019, 2022.
Article in English | MEDLINE | ID: mdl-35919560

ABSTRACT

Core concepts offer coherence to the discourse of a scientific discipline and facilitate teaching by identifying large unifying themes that can be tailored to the level of the class and expertise of the instructor. This approach to teaching has been shown to encourage deeper learning that can be integrated across subdisciplines of biology and has been adopted by several other biology subdisciplines. However, Comparative Vertebrate Anatomy, although one of the oldest biological areas of study, has not had its core concepts identified. Here, we present five core concepts and seven competencies (skills) for Comparative Vertebrate Anatomy that came out of an iterative process of engagement with the broader community of vertebrate morphologists over a 3-year period. The core concepts are (A) evolution, (B) structure and function, (C) morphological development, (D) integration, and (E) human anatomy is the result of vertebrate evolution. The core competencies students should gain from the study of comparative vertebrate anatomy are (F) tree thinking, (G) observation, (H) dissection of specimens, (I) depiction of anatomy, (J) appreciation of the importance of natural history collections, (K) science communication, and (L) data integration. We offer a succinct description of each core concept and competency, examples of learning outcomes that could be used to assess teaching effectiveness, and examples of relevant resources for both instructors and students. Additionally, we pose a grand challenge to the community, arguing that the field of Comparative Vertebrate Anatomy needs to acknowledge racism, androcentrism, homophobia, genocide, slavery, and other influences in its history and address their lingering effects in order to move forward as a thriving discipline that is inclusive of all students and scientists and continues to generate unbiased knowledge for the betterment of humanity. Despite the rigorous process used to compile these core concepts and competencies, we anticipate that they will serve as a framework for an ongoing conversation that ensures Comparative Vertebrate Anatomy remains a relevant field in discovery, innovation, and training of future generations of scientists.

3.
Integr Comp Biol ; 61(3): 926-933, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34215879

ABSTRACT

This paper introduces the collection of manuscripts from the symposium, "Biology Beyond the Classroom: Experiential Learning through Authentic Research, Design, and Community Engagement," presented at the 2021 annual meeting of the Society for Integrative and Comparative Biology. The following papers showcase innovative approaches for engaging undergraduate students in experiential science learning experiences. Specifically, we focus on three high-impact practices that allow students to take their learning outside of the classroom for increased relevance and authenticity: (1) Course-Based Undergraduate Research, (2) Digital Fabrication in Makerspaces, and (3) Service or Community-based Learning Opportunities. Although each topic is unique, all provide an alternative approach to the traditional lecture and have proven effective at appealing to diverse groups of students who are traditionally underrepresented in the Science, Technology, Engineering, and Mathematics workforce.


Subject(s)
Biology/education , Learning , Problem-Based Learning , Humans , Students , Universities
4.
Integr Comp Biol ; 61(3): 944-956, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34113995

ABSTRACT

Incorporating active research opportunities into undergraduate curricula is one of the most cited elements demonstrated to improve inclusive excellence and retention in all STEM fields. Allegheny College has a long and nationally-recognized tradition of collaborative student-faculty research within the academic curriculum and as co-curricular opportunities. We present an example of the former, a Course-based Undergraduate Research Experience (CURE), FSBio 201, that has been central to Allegheny's biology curriculum for over two decades. The course emphasizes biological research design, execution, and communication. We have coded and analyzed feedback from student evaluations and from the national CURE project database, both of which measure students' perceptions and attitudes toward the course. The majority of the student feedback related to the course learning outcomes of fostering independent research and communication skills was positive. However, we also see areas for improvement, such as how we employ peer-to-peer mentoring and how we teach quantitative and computer-based skills. We conclude that students' self-reported data are in line with our learning outcomes and provide FSBio 201 as a model for introducing college undergraduates to biological research.


Subject(s)
Biology/education , Curriculum , Learning , Students , Communication , Humans , Universities
5.
J Morphol ; 272(2): 169-79, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21210488

ABSTRACT

The majority of studies on the evolution and function of feeding in sharks have focused primarily on the movement of cranial components and muscle function, with little integration of tooth properties or function. As teeth are subjected to sometimes extreme loads during feeding, they undergo stress, strain, and potential failure. As attributes related to structural strength such as material properties and overall shape may be subjected to natural selection, both prey processing ability and structural parameters must be considered to understand the evolution of shark teeth. In this study, finite element analysis was used to visualize stress distributions of fossil and extant shark teeth during puncture, unidirectional draw (cutting), and holding. Under the loading and boundary conditions here, which are consistent with bite forces of large sharks, shark teeth are structurally strong. Teeth loaded in puncture have localized stress concentrations at the cusp apex that diminish rapidly away from the apex. When loaded in draw and holding, the majority of the teeth show stress concentrations consistent with well designed cantilever beams. Notches result in stress concentration during draw and may serve as a weak point; however they are functionally important for cutting prey during lateral head shaking behavior. As shark teeth are replaced regularly, it is proposed that the frequency of tooth replacement in sharks is driven by tooth wear, not tooth failure. As the tooth tip and cutting edges are worn, the surface areas of these features increase, decreasing the amount of stress produced by the tooth. While this wear will not affect the general structural strength of the tooth, tooth replacement may also serve to keep ahead of damage caused by fatigue that may lead to eventual tooth failure.


Subject(s)
Sharks/anatomy & histology , Tooth/anatomy & histology , Animals , Biological Evolution , Finite Element Analysis , Fossils
6.
Arch Oral Biol ; 55(3): 203-9, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20102762

ABSTRACT

To date, the majority of studies on feeding mechanics in sharks have focused on the movement of cranial components and muscle function, with little attention to tooth properties or function. Attributes related to mechanical properties, such as structural strength, may also be subjected to natural selection. Additionally it is necessary to characterize these properties in order to construct biomechanical models of tooth function. The goal of this study was to determine hardness and elastic modulus for the shark tooth materials enameloid, osteodentine, and orthodentine. Five teeth each from one carcharhiniform species, the bonnethead Sphyrna tiburo, and one lamniform, the sand tiger shark Carcharias taurus, were utilized for nanoindentation testing. Each tooth was sectioned transversely, air-dried, and polished. Both enameloid and dentine were tested on each tooth via a Berkovich diamond tip, with nine 2 microm deep indentations per material. t-Tests were used to determine if there were differences in hardness and Young's modulus between the tooth materials of the two species. There was no significant difference between the two species for the material properties of enameloid, however both hardness and Young's modulus were higher for osteodentine than for orthodentine. This may be due to differences in microanatomy and chemical composition, however this needs to be studied in greater detail.


Subject(s)
Sharks/anatomy & histology , Tooth/anatomy & histology , Animals , Dental Enamel/anatomy & histology , Dental Stress Analysis/instrumentation , Dentin/anatomy & histology , Diamond/chemistry , Elastic Modulus , Female , Hardness , Sharks/classification , Stress, Mechanical
7.
J Morphol ; 269(9): 1041-55, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18473370

ABSTRACT

The nurse shark, Ginglymostoma cirratum, is an obligate suction feeder that preys on benthic invertebrates and fish. Its cranial morphology exhibits a suite of structural and functional modifications that facilitate this mode of prey capture. During suction-feeding, subambient pressure is generated by the ventral expansion of the hyoid apparatus and the floor of its buccopharyngeal cavity. As in suction-feeding bony fishes, the nurse shark exhibits expansive, compressive, and recovery kinematic phases that produce posterior-directed water flow through the buccopharyngeal cavity. However, there is generally neither a preparatory phase nor cranial elevation. Suction is generated by the rapid depression of the buccopharyngeal floor by the coracoarcualis, coracohyoideus, and coracobranchiales muscles. Because the hyoid arch of G. cirratum is loosely connected to the mandible, contraction of the rectus cervicis muscle group can greatly depress the floor of the buccopharyngeal cavity below the depressed mandible, resulting in large volumetric expansion. Suction pressures in the nurse shark vary greatly, but include the greatest subambient pressures reported for an aquatic-feeding vertebrate. Maximum suction pressure does not appear to be related to shark size, but is correlated with the rate of buccopharyngeal expansion. As in suction-feeding bony fishes, suction in the nurse shark is only effective within approximately 3 cm in front of the mouth. The foraging behavior of this shark is most likely constrained to ambushing or stalking due to the exponential decay of effective suction in front of the mouth. Prey capture may be facilitated by foraging within reef confines and close to the substrate, which can enhance the effective suction distance, or by foraging at night when it can more closely approach prey.


Subject(s)
Feeding Behavior , Head/anatomy & histology , Mouth/anatomy & histology , Muscle, Skeletal/anatomy & histology , Sharks/anatomy & histology , Skull/anatomy & histology , Animals , Electromyography , Female , Jaw/anatomy & histology , Jaw/physiology , Male , Mouth/physiology , Muscle, Skeletal/physiology , Predatory Behavior , Sharks/physiology , Skull/physiology , Sucking Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...