Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(30): eabo0689, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35895817

ABSTRACT

Descending control from the brain to the spinal cord shapes our pain experience, ranging from powerful analgesia to extreme sensitivity. Increasing evidence from both preclinical and clinical studies points to an imbalance toward descending facilitation as a substrate of pathological pain, but the underlying mechanisms remain unknown. We used an optogenetic approach to manipulate serotonin (5-HT) neurons of the nucleus raphe magnus that project to the dorsal horn of the spinal cord. We found that 5-HT neurons exert an analgesic action in naïve mice that becomes proalgesic in an experimental model of neuropathic pain. We show that spinal KCC2 hypofunction turns this descending inhibitory control into paradoxical facilitation; KCC2 enhancers restored 5-HT-mediated descending inhibition and analgesia. Last, combining selective serotonin reuptake inhibitors (SSRIs) with a KCC2 enhancer yields effective analgesia against nerve injury-induced pain hypersensitivity. This uncovers a previously unidentified therapeutic path for SSRIs against neuropathic pain.

2.
Int J Mol Sci ; 21(22)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198169

ABSTRACT

Dopaminergic medication for Parkinson's disease is associated with troubling dystonia and dyskinesia and, in rodents, dopaminergic agonists likewise induce a variety of orofacial motor responses, certain of which are mimicked by serotonin2C (5-HT2C) receptor agonists. However, the neural substrates underlying these communalities and their interrelationship remain unclear. In Sprague-Dawley rats, the dopaminergic agonist, apomorphine (0.03-0.3 mg/kg) and the preferential D2/3 receptor agonist quinpirole (0.2-0.5 mg/kg), induced purposeless oral movements (chewing, jaw tremor, tongue darting). The 5-HT2C receptor antagonist 5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxyl]-5-pyridyl]carbamoyl]-6-trifluoromethylindone (SB 243213) (1 mg/kg) reduced the oral responses elicited by specific doses of both agonists (0.1 mg/kg apomorphine; 0.5 mg/kg quinpirole). After having confirmed that the oral bouts induced by quinpirole 0.5 mg/kg were blocked by another 5-HT2C antagonist (6-chloro-5-methyl-1-[6-(2-methylpiridin-3-yloxy)pyridine-3-yl carbamoyl] indoline (SB 242084), 1 mg/kg), we mapped the changes in neuronal activity in numerous sub-territories of the basal ganglia using c-Fos expression. We found a marked increase of c-Fos expression in the subthalamic nucleus (STN) in combining quinpirole (0.5 mg/kg) with either SB 243213 or SB 242084. In a parallel set of electrophysiological experiments, the same combination of SB 243213/quinpirole produced an irregular pattern of discharge and an increase in the firing rate of STN neurons. Finally, it was shown that upon the electrical stimulation of the anterior cingulate cortex, quinpirole (0.5 mg/kg) increased the response of substantia nigra pars reticulata neurons corresponding to activation of the "hyperdirect" (cortico-subthalamonigral) pathway. This effect of quinpirole was abolished by the two 5-HT2C antagonists. Collectively, these results suggest that induction of orofacial motor responses by D2/3 receptor stimulation involves 5-HT2C receptor-mediated activation of the STN by recruitment of the hyperdirect (cortico-subthalamonigral) pathway.


Subject(s)
Dopamine Agonists/pharmacology , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin/metabolism , Subthalamic Nucleus/drug effects , Aminopyridines/pharmacology , Animals , Apomorphine/pharmacology , Basal Ganglia/drug effects , Basal Ganglia/metabolism , Gyrus Cinguli/drug effects , Gyrus Cinguli/metabolism , Indoles/pharmacology , Male , Motor Cortex/drug effects , Motor Cortex/metabolism , Neural Pathways/drug effects , Neural Pathways/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Pyridines/pharmacology , Quinpirole/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D2/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Subthalamic Nucleus/metabolism
3.
Int J Mol Sci ; 20(12)2019 06 14.
Article in English | MEDLINE | ID: mdl-31208016

ABSTRACT

The effects triggered by serotonin2C (5-hydroxytryptamin2C, 5-HT2C) receptor agonists in the brain are often subtle, and methodologies highlighting their widespread actions to account for their multiple modulatory influences on behaviors are still lacking. We report an extended analysis of a neurochemical database on monoamines obtained after the intraperitoneal administration of the preferential 5-HT2C receptor agonist WAY-163909 (0.3 and 3 mg/kg) in 29 distinct rat brain regions. We focused on the metabolite of 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), the metabolites of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the index of the turnovers 5-HIAA/5-HT and DOPAC/DA. WAY-163909 increased and decreased 5-HIAA tissue levels in the amygdala and dorsolateral orbitofrontal cortex, respectively, and decreased the 5-HT turnover in the infralimbic cortex. It enhanced HVA levels in the medial orbitofrontal cortex and DOPAC levels in the amygdala. WAY-163909 increased and decreased DA turnover in the medial orbitofrontal cortex and the anterior insular cortex, respectively. The correlative analysis of the turnovers between pairs of brain regions revealed low levels of correlations across the brain but presented a distinct pattern of correlations after WAY-163909 was compared to saline-treated rats. WAY-163909, notably at 0.3 mg/kg, favored cortico-cortical and cortico-subcortical correlations of both turnovers separately, and frontal DOPAC/DA ratio with cortical and subcortical 5-HIAA/5-HT ratios at 3 mg/kg. In conclusion, the qualitative, but not the quantitative analysis shows that WAY-163909 alters the pattern of correlations across the brain, which could account for its multiple behavioral influences.


Subject(s)
Azepines/pharmacology , Brain/metabolism , Dopamine/metabolism , Indoles/pharmacology , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin/metabolism , Animals , Brain/drug effects , Male , Rats , Rats, Sprague-Dawley
4.
Neurochem Int ; 124: 245-255, 2019 03.
Article in English | MEDLINE | ID: mdl-30685320

ABSTRACT

Serotonin2C receptor (5-HT2C) agonists are promising drugs for the treatment of neuropsychiatric diseases. However, their effect is not completely understood in part because they possibly affect several neurobiological networks simultaneously. We studied the effect of the 5-HT2C receptor agonist WAY-163909 (0.3 and 3 mg/kg; i.p.) on the tissue concentration of dopamine (DA), 5-HT and noradrenaline (NA) in 29 rat brain regions related to motor, cognitive, mood and vegetative networks. We found that WAY-163909, without altering the tissue concentration of NA, increased 5-HT concentrations in the medial orbitofrontal cortex and the motor cortex M2 at 3 mg/kg and decreased it in the dorsolateral orbitofrontal cortex at 0.3 mg/kg. WAY-163909 enhanced DA concentrations in the central nucleus of the amygdala at 0.3 mg/kg and reduced it in the dorsal hypothalamus at 3 mg/kg. Using correlative analysis of the tissue content of monoamines, WAY-163909 dramatically changed the profile and the pattern of the correlations within and between monoaminergic systems without drastically changing the total number of these correlations. The profile of these changes in correlations was dose-dependent as it was very different between the two doses within and among monoaminergic systems. In conclusion, the data indicated that the 5-HT2C receptor agonist WAY-163909 quantitatively alters monoamine content in very few regions but promotes multiple changes of monoaminergic connectivity in the brain.


Subject(s)
Azepines/pharmacology , Biogenic Monoamines/metabolism , Brain/drug effects , Brain/metabolism , Indoles/pharmacology , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Animals , Biogenic Monoamines/agonists , Biogenic Monoamines/antagonists & inhibitors , Male , Rats , Rats, Sprague-Dawley
5.
Pain Rep ; 3(3): e660, 2018 May.
Article in English | MEDLINE | ID: mdl-29922748

ABSTRACT

INTRODUCTION: Purinergic ionotropic P2X receptors (P2RX) are involved in normal and pathological pain transmission. Among them, P2X4 are expressed in dorsal root ganglion and in the spinal cord. Their activation during nerve injury or chronic peripheral inflammation modifies pain sensitivity that leads to the phenomenon of allodynia and hyperalgesia. OBJECTIVES: We study here, in vivo, the role of P2X4 on the excitability of dorsal horn neurons (DHNs) in naive or pathological context. METHODS: We recorded DHNs in vivo in anesthetized wild-type or P2RX4-/- mice. We measured nociceptive integration and short-term sensitization by DHNs both in naive and inflamed mice. RESULTS: Our results indicate that P2X4 alter neuronal excitability only in the pathological context of peripheral inflammation. Consequently, excitability of DHNs from inflamed P2RX4-/- mice remains similar to naive animals. CONCLUSION: These results confirm the prominent role of P2X4 in inflammatory pain context and demonstrate that P2X4 are also involved in the hyperexcitability of DHNs.

SELECTION OF CITATIONS
SEARCH DETAIL
...